Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Sep;1790(9):892-9.
doi: 10.1016/j.bbagen.2008.11.010. Epub 2008 Dec 30.

Epigenetics in hyperhomocysteinemic states. A special focus on uremia

Affiliations
Review

Epigenetics in hyperhomocysteinemic states. A special focus on uremia

Diego Ingrosso et al. Biochim Biophys Acta. 2009 Sep.

Abstract

Aim of this article is to review the topic of epigenetic control of gene expression, especially regarding DNA methylation, in chronic kidney disease and uremia. Hyperhomocysteinemia is considered an independent cardiovascular risk factor, although the most recent intervention studies utilizing folic acid are negative. The accumulation of homocysteine in blood leads to an intracellular increase of S-adenosylhomocysteine (AdoHcy), a powerful competitive methyltransferase inhibitor, which is itself considered a predictor of cardiovascular events. The extent of methylation inhibition of each individual methyltransferase depends on the methyl donor S-adenosylmethionine (AdoMet) availability, on the [AdoMet]/[AdoHcy] ratio, and on the individual Km value for AdoMet and Ki for AdoHcy. DNA methyltransferases are among the principal targets of hyperhomocysteinemia, as studies in several cell culture and animal models, as well as in humans, almost unequivocally show. In vivo, DNA methylation may be also influenced by various factors in different tissues, for example by rate of cell growth, folate status, etc. and importantly inflammation. In chronic kidney disease and in uremia, hyperhomocysteinemia is commonly seen, and can be associated with global DNA hypomethylation, and with abnormal allelic expression of genes regulated through methylation. This alteration is susceptible of reversal upon homocysteine-lowering therapy obtained through folate administration. If this abnormality will translate itself in alterations of expression of genes relevant to the pathogenesis of this disease still remains to be established. In addition, these results establish a link between the epigenetic control of gene expression and xenobiotic influences, such as folate therapy.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources