Genetic control of morphogenesis - Hox induced organogenesis of the posterior spiracles
- PMID: 19247941
- DOI: 10.1387/ijdb.072421jc
Genetic control of morphogenesis - Hox induced organogenesis of the posterior spiracles
Abstract
The posterior spiracle has become one of the best systems to study how Hox genes control morphogenesis. Interaction of Abdominal-B (ABD-B) with dorso ventral and intrasegmental positional information leads to the local activation of ABD-B primary targets in the dorsal region of the eighth abdominal segment (A8). Primary targets pattern the spiracle subdividing it into two broad areas: external stigmatophore vs. internal spiracular chamber precursor cells. Primary targets then activate secondary targets and modulate the expression of signalling molecules in the spiracle primordium creating unique spiracle positional values. This genetic cascade activates the realisator genes that modulate the cell behaviours causing invagination, elongation and cell rearrangements responsible for spiracle morphogenesis. The spiracle realisators that have been identified to date correspond to cell adhesion proteins, cytoskeleton regulators and cell polarity molecules. Interestingly, these realisators localise to different apico-basal locations in the cell (RhoGEF apical, Crumbs subapical, E-cadherin in the adherens junction, RhoGAP basolateral). Therefore, the Hox anterior-posterior code is converted in the cell into apico-basal information required to implement the posterior spiracle morphogenetic program. We believe this may be a common characteristic for Hox induced organogenesis.
Similar articles
-
Coordinated control of cell adhesion, polarity, and cytoskeleton underlies Hox-induced organogenesis in Drosophila.Curr Biol. 2006 Nov 21;16(22):2206-16. doi: 10.1016/j.cub.2006.09.029. Curr Biol. 2006. PMID: 17113384
-
Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis.Development. 2005 Jul;132(13):3093-102. doi: 10.1242/dev.01889. Epub 2005 Jun 1. Development. 2005. PMID: 15930099
-
Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis.Dev Biol. 1999 Oct 1;214(1):197-210. doi: 10.1006/dbio.1999.9391. Dev Biol. 1999. PMID: 10491268
-
Variations on a theme: Hox and Wnt combinatorial regulation during animal development.Sci STKE. 2006 Oct 3;2006(355):pe38. doi: 10.1126/stke.3552006pe38. Sci STKE. 2006. PMID: 17018850 Review.
-
Function and specificity of Hox genes.Int J Dev Biol. 2009;53(8-10):1404-19. doi: 10.1387/ijdb.072462df. Int J Dev Biol. 2009. PMID: 19247930 Review.
Cited by
-
JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade.PLoS Genet. 2015 Jul 31;11(7):e1005412. doi: 10.1371/journal.pgen.1005412. eCollection 2015 Jul. PLoS Genet. 2015. PMID: 26230388 Free PMC article.
-
Interlocking of co-opted developmental gene networks in Drosophila and the evolution of pre-adaptive novelty.Nat Commun. 2023 Sep 15;14(1):5730. doi: 10.1038/s41467-023-41414-3. Nat Commun. 2023. PMID: 37714829 Free PMC article.
-
Hox targets and cellular functions.Scientifica (Cairo). 2013;2013:738257. doi: 10.1155/2013/738257. Epub 2013 Dec 30. Scientifica (Cairo). 2013. PMID: 24490109 Free PMC article.
-
Transcriptional Control of Apical-Basal Polarity Regulators.Int J Mol Sci. 2021 Nov 15;22(22):12340. doi: 10.3390/ijms222212340. Int J Mol Sci. 2021. PMID: 34830224 Free PMC article. Review.
-
Development and Function of the Drosophila Tracheal System.Genetics. 2018 Jun;209(2):367-380. doi: 10.1534/genetics.117.300167. Genetics. 2018. PMID: 29844090 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases