Changes of intra-mitochondrial Ca2+ in adult ventricular cardiomyocytes examined using a novel fluorescent Ca2+ indicator targeted to mitochondria
- PMID: 19249308
- DOI: 10.1016/j.yjmcc.2009.02.016
Changes of intra-mitochondrial Ca2+ in adult ventricular cardiomyocytes examined using a novel fluorescent Ca2+ indicator targeted to mitochondria
Abstract
In this study a Ca(2+) sensitive protein was targeted to the mitochondria of adult rabbit ventricular cardiomyocytes using an adenovirus transfection technique. The probe (Mitycam) was a Ca(2+)-sensitive inverse pericam fused to subunit VIII of human cytochrome c oxidase. Mitycam expression pattern and Ca(2+) sensitivity was characterized in HeLa cells and isolated adult rabbit cardiomyocytes. Cardiomyocytes expressing Mitycam were voltage-clamped and depolarized at regular intervals to elicit a Ca(2+) transient. Cytoplasmic (Fura-2) and mitochondrial Ca(2+) (Mitycam) fluorescence were measured simultaneously under a range of cellular Ca(2+) loads. After 48 h post-adenoviral transfection, Mitycam expression showed a characteristic localization pattern in HeLa cells and cardiomyocytes. The Ca(2+) sensitive component of Mitycam fluorescence was 12% of total fluorescence in HeLa cells with a K(d) of approximately 220 nM. In cardiomyocytes, basal and beat-to-beat changes in Mitycam fluorescence were detected on initiation of a train of depolarizations. Time to peak of the mitochondrial Ca(2+) transient was slower, but the rate of decay was faster than the cytoplasmic signal. During spontaneous Ca(2+) release the relative amplitude and the time course of the mitochondrial and cytoplasmic signals were comparable. Inhibition of mitochondrial respiration decreased the mitochondrial transient amplitude by approximately 65% and increased the time to 50% decay, whilst cytosolic Ca(2+) transients were unchanged. The mitochondrial Ca(2+) uniporter (mCU) inhibitor Ru360 prevented both the basal and transient components of the rise in mitochondrial Ca(2+). The mitochondrial-targeted Ca(2+) probe indicates sustained and transient phases of mitochondrial Ca(2+) signal, which are dependent on cytoplasmic Ca(2+) levels and require a functional mCU.
Comment in
-
Ca2+ dynamics in the mitochondria - state of the art.J Mol Cell Cardiol. 2011 Nov;51(5):627-31. doi: 10.1016/j.yjmcc.2011.08.003. Epub 2011 Aug 16. J Mol Cell Cardiol. 2011. PMID: 21864537 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
