Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar-Apr;18(2):81-5.
doi: 10.1016/j.jstrokecerebrovasdis.2008.09.018.

Peripheral administration of carbenoxolone reduces ischemic reperfusion injury in transient model of cerebral ischemia

Affiliations

Peripheral administration of carbenoxolone reduces ischemic reperfusion injury in transient model of cerebral ischemia

Abedin Vakili et al. J Stroke Cerebrovasc Dis. 2009 Mar-Apr.

Abstract

Carbenoxolone (CBX) has a neuroprotective effect in experimental models of brain ischemia and trauma. However, systemic effect of CBX on ischemic reperfusion injuries has not been investigated in a temporary model of focal cerebral ischemia. Male Wistar rats (n = 32) were divided into control and CBX-treated (100, 200, or 400 mg/kg, intraperitoneally) groups. Transient focal cerebral ischemia was induced by 60-minute middle cerebral artery occlusion by filament method, followed by 23-hour reperfusion. At the end of 24-hour ischemia, neurologic deficit score was tested and infarct volumes were determined using triphenyltetrazolium chloride staining. Administration of CBX (100, 200, or 400 mg/kg) at the beginning of ischemia significantly reduced cortical infarct volumes by 48%, 58%, and 63%, and striatal infarct volumes by 34%, 63%, and 63%, respectively. Nevertheless, CBX has no effect on neurologic dysfunction. Our findings indicated that peripheral administration of CBX has a neuroprotective effect on postischemic damage in a temporary model of focal cerebral ischemia in rat.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources