Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;9(5):1152-76.
doi: 10.1002/pmic.200800586.

Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence

Affiliations

Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence

Indranil Chatterjee et al. Proteomics. 2009 Mar.

Abstract

Staphylococcus aureus Clp ATPases (molecular chaperones) alter normal physiological functions including an aconitase-mediated effect on post-stationary growth, acetate catabolism, and entry into death phase (Chatterjee et al., J. Bacteriol. 2005, 187, 4488-4496). In the present study, the global function of ClpC in physiology, metabolism, and late-stationary phase survival was examined using DNA microarrays and 2-D PAGE followed by MALDI-TOF MS. The results suggest that ClpC is involved in regulating the expression of genes and/or proteins of gluconeogenesis, the pentose-phosphate pathway, pyruvate metabolism, the electron transport chain, nucleotide metabolism, oxidative stress, metal ion homeostasis, stringent response, and programmed cell death. Thus, one major function of ClpC is balancing late growth phase carbon metabolism. Furthermore, these changes in carbon metabolism result in alterations of the intracellular concentration of free NADH, the amount of cell-associated iron, and fatty acid metabolism. This study provides strong evidence for ClpC as a critical factor in staphylococcal energy metabolism, stress regulation, and late-stationary phase survival; therefore, these data provide important insight into the adaptation of S. aureus toward a persister state in chronic infections.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources