Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations
- PMID: 19258456
- PMCID: PMC2650503
- DOI: 10.1073/pnas.0811065106
Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations
Abstract
Fully understanding the mechanisms of signaling proteins such as G protein-coupled receptors (GPCRs) will require the characterization of their conformational states and the pathways connecting those states. The recent crystal structures of the beta(2)- and beta(1)-adrenergic receptors in a nominally inactive state constituted a major advance toward this goal, but also raised new questions. Although earlier biochemical observations had suggested that these receptors possessed a set of contacts between helices 3 and 6, known as the ionic lock, which was believed to form a molecular switch for receptor activation, the crystal structures lacked these contacts. The unexpectedly broken ionic lock has raised questions about the true conformation(s) of the inactive state and the role of the ionic lock in receptor activation and signaling. To address these questions, we performed microsecond-timescale molecular dynamics simulations of the beta(2)-adrenergic receptor (beta(2)AR) in multiple wild-type and mutant forms. In wild-type simulations, the ionic lock formed reproducibly, bringing the intracellular ends of helices 3 and 6 together to adopt a conformation similar to that found in inactive rhodopsin. Our results suggest that inactive beta(2)AR exists in equilibrium between conformations with the lock formed and the lock broken, whether or not the cocrystallized ligand is present. These findings, along with the formation of several secondary structural elements in the beta(2)AR loops during our simulations, may provide a more comprehensive picture of the inactive state of the beta-adrenergic receptors, reconciling the crystal structures with biochemical studies.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- Rasmussen SGF, et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature. 2007;450:383–387. - PubMed
-
- Rosenbaum DR, et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science. 2007;318:1266–1273. - PubMed
-
- Lundstrom K. Latest development in drug discovery on G protein-coupled receptors. Curr Protein Pept Sci. 2006;7:465–470. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials