Characterization of the arylsulfatase I (ARSI) gene preferentially expressed in the human retinal pigment epithelium cell line ARPE-19
- PMID: 19262745
- PMCID: PMC2650720
Characterization of the arylsulfatase I (ARSI) gene preferentially expressed in the human retinal pigment epithelium cell line ARPE-19
Abstract
Purpose: The aim of this study was to characterize the arylsulfatase I (ARSI) gene that has been shown to be preferentially expressed in the human retinal pigment epithelium cell line ARPE-19 and to propose it as a candidate gene responsible for inherited eye diseases such as retinitis pigmentosa (RP).
Methods: Full-length cDNA clones encoding ARSI, arylsulfatase A (ARSA), and sulfatase modifying factor 1 (SUMF1) were isolated from ARPE-19 cDNA libraries constructed using the vector-capping method. The expression vectors for their FLAG-tagged proteins were transfected into ARPE-19 cells, and the expression products were characterized by western blot analysis and arylsulfatase assay. The entire region of the ARSI gene locus was sequenced using the genomic DNA samples of 68 RP patients.
Results: Transiently produced ARSI-FLAG was localized to the endoplasmic reticulum and was detected in the cellular fraction and the medium. When ARSI-FLAG and SUMF1-FLAG were coexpressed, the conditioned medium of the transfected cells showed arylsulfatase activity at a range of neutral pH. No mutation was found in the ARSI gene locus of the RP patients examined.
Conclusions: ARSI may be a secreted sulfatase and may function in the extracellular space. Although ARSI may not be a causative gene for lysosomal storage diseases, preferentially expressed in the eye, ARSI would be a candidate gene causing inherited eye diseases for future mutation screening.
Figures




References
-
- Hanson SR, Best MD, Wong CH. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl. 2004;43:5736–63. - PubMed
-
- Schmidt B, Selmer T, Ingendoh A, von Figura K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell. 1995;82:271–8. - PubMed
-
- Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell. 2003;113:435–44. - PubMed
-
- Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell. 2003;113:445–56. - PubMed
-
- Sardiello M, Annunziata I, Roma G, Ballabio A. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum Mol Genet. 2005;14:3203–17. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases