Model-based automatic detection of the anterior and posterior commissures on MRI scans
- PMID: 19264138
- PMCID: PMC2674131
- DOI: 10.1016/j.neuroimage.2009.02.030
Model-based automatic detection of the anterior and posterior commissures on MRI scans
Abstract
The projections of the anterior and posterior commissures (AC/PC) on the mid-sagittal plane of the human brain are important landmarks in neuroimaging. They can be used, for example, during MRI scanning for acquiring the imaging sections in a standard orientation. In post-acquisition image processing, these landmarks serve to establish an anatomically-based frame of reference within the brain that can be extremely useful in designing automated image analysis algorithms such as image segmentation and registration methods. This paper presents a fully automatic model-based algorithm for AC/PC detection on MRI scans. The algorithm utilizes information from a number of model images on which the locations of the AC/PC and a reference point (the vertex of the superior pontine sulcus) are known. This information is then used to locate the landmarks on test scans by template matching. The algorithm is designed to be fast, robust, and accurate. The method is flexible in that it can be trained to work on different image contrasts, optimized for different populations, or scanning modes. To assess the effectiveness of this technique, we compared automatically and manually detected landmark locations on 84 T(1)-weighted and 42 T(2)-weighted test scans. Overall, the average Euclidean distance between automatically and manually detected landmarks was 1.1 mm. A software implementation of the algorithm is freely available online at www.nitrc.org/projects/art.
Figures


Similar articles
-
A model-based, semi-global segmentation approach for automatic 3-D point landmark localization in neuroimages.IEEE Trans Med Imaging. 2008 Aug;27(8):1034-44. doi: 10.1109/TMI.2008.915684. IEEE Trans Med Imaging. 2008. PMID: 18672421
-
Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.IEEE Trans Biomed Eng. 2005 Jun;52(6):1128-31. doi: 10.1109/TBME.2005.846709. IEEE Trans Biomed Eng. 2005. PMID: 15977742 Clinical Trial.
-
Automatic identification of the reference system based on the fourth ventricular landmarks in T1-weighted MR images.Acad Radiol. 2010 Jan;17(1):67-74. doi: 10.1016/j.acra.2009.07.013. Epub 2009 Sep 5. Acad Radiol. 2010. PMID: 19734061
-
Automatic statistical shape analysis of cerebral asymmetry in 3D T1-weighted magnetic resonance images at vertex-level: application to neuroleptic-naïve schizophrenia.Magn Reson Imaging. 2013 Jun;31(5):676-87. doi: 10.1016/j.mri.2012.10.021. Epub 2013 Jan 20. Magn Reson Imaging. 2013. PMID: 23337078
-
Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models.Neuroimage. 2013 Dec;83:335-45. doi: 10.1016/j.neuroimage.2013.06.006. Epub 2013 Jun 11. Neuroimage. 2013. PMID: 23769921 Free PMC article.
Cited by
-
Disuse-driven plasticity in the human thalamus and putamen.bioRxiv [Preprint]. 2024 Jan 25:2023.11.07.566031. doi: 10.1101/2023.11.07.566031. bioRxiv. 2024. Update in: Cell Rep. 2025 Apr 22;44(4):115570. doi: 10.1016/j.celrep.2025.115570. PMID: 37987000 Free PMC article. Updated. Preprint.
-
SWADESH: a multimodal multi-disease brain imaging and neuropsychological database and data analytics platform.Front Neurol. 2023 Oct 4;14:1258116. doi: 10.3389/fneur.2023.1258116. eCollection 2023. Front Neurol. 2023. PMID: 37859652 Free PMC article.
-
Morphometric mapping of the macrostructural abnormalities of midsagittal corpus callosum in Wilson's disease.Ann Mov Disord. 2021 May 31;4(2):60-65. doi: 10.4103/AOMD.AOMD_41_20. Ann Mov Disord. 2021. PMID: 35936213 Free PMC article.
-
Robust automated constellation-based landmark detection in human brain imaging.Neuroimage. 2018 Apr 15;170:471-481. doi: 10.1016/j.neuroimage.2017.04.012. Epub 2017 Apr 6. Neuroimage. 2018. PMID: 28392490 Free PMC article. Review.
-
Resting state functional connectivity and structural abnormalities of the brain in acute retarded catatonia: an exploratory MRI study.Eur Arch Psychiatry Clin Neurosci. 2022 Sep;272(6):1045-1059. doi: 10.1007/s00406-021-01345-w. Epub 2021 Oct 20. Eur Arch Psychiatry Clin Neurosci. 2022. PMID: 34668026
References
-
- Ardekani BA, Choi SJ, Hossein-Zadeh GA, Porjesz B, Tanabe JL, Lim KO, Bilder R, Helpern JA, Begleiter H. Functional magnetic resonance imaging of brain activity in the visual oddball task. Brain Res Cogn Brain Res. 2002;14:347–356. - PubMed
-
- Ardekani BA, Kershaw J, Braun M, Kanno I. Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE Trans Med Imaging. 1997;16:947–952. - PubMed
-
- Boesen K, Frey S, Huang J, Germann J, Stern J, Collins DL, Evans AC, Rottenberg DA. Inter-rater reproducibility of 3D cortical and sub-cortical landmark points. 11th Annual Meeting of the Organization for Human Brain Mapping; Toronto, Canada. 2005.
-
- Han Y, Park H. Automatic registration of brain magnetic resonance images based on Talairach reference system. J Magn Reson Imaging. 2004;20:572–580. - PubMed
-
- Hu Q, Nowinski WL. A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal. Neuroimage. 2003;20:2153–2165. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical