Label-free biosensing with functionalized nanopipette probes
- PMID: 19264962
- PMCID: PMC2651834
- DOI: 10.1073/pnas.0900306106
Label-free biosensing with functionalized nanopipette probes
Abstract
Nanopipette technology can uniquely identify biomolecules such as proteins based on differences in size, shape, and electrical charge. These differences are determined by the detection of changes in ionic current as the proteins interact with the nanopipette tip coated with probe molecules. Here we show that electrostatic, biotin-streptavidin, and antibody-antigen interactions on the nanopipette tip surface affect ionic current flowing through a 50-nm pore. Highly charged polymers interacting with the glass surface modulated the rectification property of the nanopipette electrode. Affinity-based binding between the probes tethered to the surface and their target proteins caused a change in the ionic current due to a partial blockade or an altered surface charge. These findings suggest that nanopipettes functionalized with appropriate molecular recognition elements can be used as nanosensors in biomedical and biological research.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Monolithically integrated Mach-Zehnder biosensors for real-time label-free monitoring of biomolecular reactions.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7654-7. doi: 10.1109/IEMBS.2011.6091886. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22256111
-
Biotin-streptavidin binding interactions of dielectric filled silicon bulk acoustic resonators for smart label-free biochemical sensor applications.Sensors (Basel). 2014 Mar 7;14(3):4585-98. doi: 10.3390/s140304585. Sensors (Basel). 2014. PMID: 24608003 Free PMC article.
-
Development of robust and standardized cantilever sensors based on biotin/NeutrAvidin coupling for antibody detection.Sensors (Basel). 2013 Apr 19;13(4):5273-85. doi: 10.3390/s130405273. Sensors (Basel). 2013. PMID: 23604028 Free PMC article.
-
Nanopipettes for Chemical Analysis in Life Sciences.Chembiochem. 2025 Apr 1;26(7):e202400879. doi: 10.1002/cbic.202400879. Epub 2025 Mar 12. Chembiochem. 2025. PMID: 40014334 Review.
-
Recent advances in molecular recognition based on nanoengineered platforms.Acc Chem Res. 2014 Apr 15;47(4):979-88. doi: 10.1021/ar400162w. Epub 2014 Jan 27. Acc Chem Res. 2014. PMID: 24467652 Review.
Cited by
-
Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY.Chem Sci. 2013 Feb 1;4(2):655-663. doi: 10.1039/C2SC21502K. Chem Sci. 2013. PMID: 23991282 Free PMC article.
-
Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization.Lab Chip. 2017 Nov 7;17(22):3772-3784. doi: 10.1039/c7lc00722a. Lab Chip. 2017. PMID: 28983543 Free PMC article.
-
Single-nanopore investigations with ion conductance microscopy.ACS Nano. 2011 Oct 25;5(10):8404-11. doi: 10.1021/nn203205s. Epub 2011 Sep 26. ACS Nano. 2011. PMID: 21923184 Free PMC article.
-
Copper Sensing with a Prion Protein Modified Nanopipette.RSC Adv. 2012 Jan 1;2(31):11638-11640. doi: 10.1039/C2RA21730A. Epub 2012 Sep 26. RSC Adv. 2012. PMID: 23243499 Free PMC article.
-
Sequence-specific nucleic acid detection from binary pore conductance measurement.J Am Chem Soc. 2012 Sep 26;134(38):15880-6. doi: 10.1021/ja3059205. Epub 2012 Sep 12. J Am Chem Soc. 2012. PMID: 22931376 Free PMC article.
References
-
- Rodolfa KT, et al. Nanoscale pipetting for controlled chemistry in small arrayed water droplets using a double-barrel pipet. Nano Lett. 2006;6:252–257. - PubMed
-
- Iwata F, Nagami S, Sumiya Y, Sasaki A. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe. Nanotechnology. 2007;18:105301.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources