Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 15;182(6):3928-36.
doi: 10.4049/jimmunol.0802226.

IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation

Affiliations

IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation

Xin Zhang et al. J Immunol. .

Abstract

IFN-beta, an effective therapy against relapsing-remitting multiple sclerosis, is naturally secreted during the innate immune response against viral pathogens. The objective of this study was to characterize the immunomodulatory mechanisms of IFN-beta targeting innate immune response and their effects on dendritic cell (DC)-mediated regulation of T cell differentiation. We found that IFN-beta1a in vitro treatment of human monocyte-derived DCs induced the expression of TLR7 and the members of its downstream signaling pathway, including MyD88, IL-1R-associated kinase 4, and TNF receptor-associated factor 6, while it inhibited the expression of IL-1R. Using small interfering RNA TLR7 gene silencing, we confirmed that IFN-beta1a-induced changes in MyD88, IL-1R-associated kinase 4, and IL-1R expression were dependent on TLR7. TLR7 expression was also necessary for the IFN-beta1a-induced inhibition of IL-1beta and IL-23 and the induction of IL-27 secretion by DCs. Supernatant transfer experiments confirmed that IFN-beta1a-induced changes in DC cytokine secretion inhibit Th17 cell differentiation as evidenced by the inhibition of retinoic acid-related orphan nuclear hormone receptor C and IL-17A gene expression and IL-17A secretion. Our study has identified a novel therapeutic mechanism of IFN-beta1a that selectively targets the autoimmune response in multiple sclerosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms