Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May-Jun;63(3):29-35.

[The effect of pH and reversible inhibitors on decarbamylation of acetylcholinesterase]

[Article in Russian]
  • PMID: 1926583

[The effect of pH and reversible inhibitors on decarbamylation of acetylcholinesterase]

[Article in Russian]
L I Kugusheva et al. Ukr Biokhim Zh (1978). 1991 May-Jun.

Abstract

Decarbamylation rate of membrane-bound methyl- and dimethyl-carbamylated acetylcholinesterase of human erythrocytes and bovine brain is reliably 1.1-1.6 times lower than that of the soluble enzyme. Such reversible inhibitors as tacrine (of non-competition action), ambenonium (mixed action) and galanthamine (competitive type of action) decelerate the decarbamylation rate of acetylcholinesterase. At pH 6 tacrine inhibits the reduction rate of soluble acetylcholinesterase activity of human erythrocytes more intensively than that of membrane-bound acetylcholinesterase. No differences in decarbamylation rate were found for the both forms of the enzyme at pH 8. Tacrine, a non-competitive inhibitor in concentrations below the inhibition constant (Ki = 1.4 x 10(-7) M) exerts the most intensive effect on the decarbamylation rate of methyl- and dimethylcarbamylated acetylcholinesterase of the mouse brain, while ambenonium and galanthamine in concentrations much (tens times) exceeding their Ki (3.1 x 10(-10) M and 4.4 x 10(-7) M, respectively) provide a decrease of the decarbamylation rate.

PubMed Disclaimer

Publication types