Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;71(6):1520-41.
doi: 10.1007/s11538-009-9412-z. Epub 2009 Mar 7.

Numerical simulation of blood flow through microvascular capillary networks

Affiliations

Numerical simulation of blood flow through microvascular capillary networks

C Pozrikidis. Bull Math Biol. 2009 Aug.

Abstract

A numerical method is implemented for computing blood flow through a branching microvascular capillary network. The simulations follow the motion of individual red blood cells as they enter the network from an arterial entrance point with a specified tube hematocrit, while simultaneously updating the nodal capillary pressures. Poiseuille's law is used to describe flow in the capillary segments with an effective viscosity that depends on the number of cells residing inside each segment. The relative apparent viscosity is available from previous computational studies of individual red blood cell motion. Simulations are performed for a tree-like capillary network consisting of bifurcating segments. The results reveal that the probability of directional cell motion at a bifurcation (phase separation) may have an important effect on the statistical measures of the cell residence time and scattering of the tube hematocrit across the network. Blood cells act as regulators of the flow rate through the network branches by increasing the effective viscosity when the flow rate is high and decreasing the effective viscosity when the flow rate is low. Comparison with simulations based on conventional models of blood flow regarded as a continuum indicates that the latter underestimates the variance of the hematocrit across the vascular tree.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources