Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;171(3):302-9.
doi: 10.1667/0033-7587-171.3.302.

The effects of smoking and lung health on the organ retention of different plutonium compounds in the Mayak PA workers

Affiliations

The effects of smoking and lung health on the organ retention of different plutonium compounds in the Mayak PA workers

K G Suslova et al. Radiat Res. 2009 Mar.

Abstract

The purpose of this study was to determine the effects of smoking and lung health on the pulmonary and extrapulmonary retention after inhalation of different chemical forms of plutonium with different solubilities in workers from the Mayak Production Association (Ozersk, Russia). Samples of lung, pulmonary lymph nodes, liver and skeleton were obtained from 800 workers who died between 1962-2000. The chemical form of plutonium aerosols, smoking history and presence of lung disease were determined. In workers with normal lung status, all plutonium chemical classes were about equally distributed between the lung parenchyma and pulmonary lymph nodes. The more insoluble chemical forms of plutonium had a greater retention in pulmonary than systemic tissues regardless of smoking history or lung health status. A history of smoking did, however, result in a significantly greater retention of less soluble chemical forms of plutonium in pulmonary tissues of workers with no lung disease. In workers with lung disease, smoking did not significantly influence the terminal organ retention of the different chemical forms of plutonium. These initial data can be used to modify dosimetry and biokinetics models used for estimating radiation risks from plutonium in humans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources