Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability
- PMID: 19274457
- PMCID: PMC2694925
- DOI: 10.1007/s00234-009-0516-9
Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability
Abstract
Introduction: The purpose of this study is to compare the variability of PCT results obtained by automatic selection of the arterial input function (AIF), venous output function (VOF) and symmetry axis versus manual selection.
Methods: Imaging data from 30 PCT studies obtained as part of standard clinical stroke care at our institution in patients with suspected acute hemispheric ischemic stroke were retrospectively reviewed. Two observers performed the post-processing of 30 CTP datasets. Each observer processed the data twice, the first time employing manual selection of AIF, VOF and symmetry axis, and a second time using automated selection of these same parameters, with the user being allowed to adjust them whenever deemed appropriate. The volumes of infarct core and of total perfusion defect were recorded. The cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and blood-brain barrier permeability (BBBP) values in standardized regions of interest were recorded. Interobserver variability was quantified using the Bland and Altman's approach.
Results: Automated post-processing yielded lower coefficients of variation for the volume of the infarct core and the volume of the total perfusion defect (15.7% and 5.8%, respectively) compared to manual post-processing (31.0% and 12.2%, respectively). Automated post-processing yielded lower coefficients of variation for PCT values (11.3% for CBV, 9.7% for CBF, and 9.5% for MTT) compared to manual post-processing (23.7% for CBV, 32.8% for CBF, and 16.7% for MTT).
Conclusion: Automated post-processing of PCT data improves interobserver agreement in measurements of CBV, CBF and MTT, as well as volume of infarct core and penumbra.
Figures
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9769817', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9769817/'}]}
- Koenig M, Klotz E, Luka B, Venderink DJ, Spittler JF, Heuser L (1998) Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology 209:85–93 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC7974057', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC7974057/'}, {'type': 'PubMed', 'value': '11003276', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11003276/'}]}
- Mayer TE, Hamann GF, Baranczyk J et al (2000) Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol 21:1441–1449 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11136934', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11136934/'}]}
- Nabavi DG, Cenic A, Henderson S, Gelb AW, Lee TY (2001) Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke 32:175–183 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1148/radiol.2221010471', 'is_inner': False, 'url': 'https://doi.org/10.1148/radiol.2221010471'}, {'type': 'PubMed', 'value': '11756730', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11756730/'}]}
- Eastwood JD, Lev MH, Azhari T et al (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236. doi:10.1148/radiol.2221010471 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.3174/ajnr.A0539', 'is_inner': False, 'url': 'https://doi.org/10.3174/ajnr.a0539'}, {'type': 'PMC', 'value': 'PMC7977671', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC7977671/'}, {'type': 'PubMed', 'value': '17698530', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17698530/'}]}
- Lin K, Kazmi KS, Law M, Babb J, Peccerelli N, Pramanik BK (2007) Measuring elevated microvascular permeability and predicting hemorrhagic transformation in acute ischemic stroke using first-pass dynamic perfusion CT imaging. AJNR Am J Neuroradiol 28:1292–1298. doi:10.3174/ajnr.A0539 - PMC - PubMed
