PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
- PMID: 19276888
- PMCID: PMC3627054
- DOI: 10.1097/MOL.0b013e328328d0a4
PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
Abstract
Purpose of review: Peroxisome proliferator-activated receptor gamma coactivator-1-alpha (PGC-1alpha) has been extensively described as a master regulator of mitochondrial biogenesis. However, PGC-1alpha activity is not constant and can be finely tuned in response to different metabolic situations. From this point of view, PGC-1alpha could be described as a mediator of the transcriptional outputs triggered by metabolic sensors, providing the idea that these sensors, together with PGC-1alpha, might be weaving a network controlling cellular energy expenditure. In this review, we will focus on how disorders such as type 2 diabetes and the metabolic syndrome might be related to an abnormal and improper function of this network.
Recent findings: Two metabolic sensors, AMP-activated protein kinase (AMPK) and SIRT1 have been described to directly affect PGC-1alpha activity through phosphorylation and deacetylation, respectively. Although the physiological relevance of these modifications and their molecular consequences are still largely unknown, recent insight from different in-vivo transgenic models clearly suggests that AMPK, SIRT1 and PGC-1alpha might act as an orchestrated network to improve metabolic fitness.
Summary: Metabolic sensors such as AMPK and SIRT1, gatekeepers of the activity of the master regulator of mitochondria, PGC-1alpha, are vital links in a regulatory network for metabolic homeostasis. Together, these players explain many of the beneficial effects of physical activity and dietary interventions in our battle against type 2 diabetes and related metabolic disorders. Hence, understanding the mechanisms by which they act could guide us to identify and improve preventive and therapeutic strategies for metabolic diseases.
Figures

References
-
- DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23:313–9. - PubMed
-
- Lillioja S, Mott DM, Howard BV, et al. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med. 1988;318:1217–25. - PubMed
-
- He J, Watkins S, Kelley DE. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes. 2001;50:817–23. - PubMed
-
- Simoneau JA, Kelley DE. Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol. 1997;83:166–71. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials