Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 1;8(7):1007-13.
doi: 10.4161/cc.8.7.8078. Epub 2009 Apr 4.

ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task

Affiliations

ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task

Berta Casar et al. Cell Cycle. .

Abstract

Signals transmitted by ERK1/2 MAP Kinases regulate the functions of multiple substrates present in the nucleus and in the cytoplasm, in similar proportions. In spite of this fact, the prevailing trend of the field has been to focus on the nuclear component, being considered the main executor of ERK biological functions. Following this fashion, scaffold proteins have been often described as modulators of ERK phosphorylation in their route, either as monomers or as dimers, to their ultimate destination at the nucleus. Contrarily, recent findings demonstrate that scaffolds and ERK dimers are essential for the activation of cytoplasmic but not nuclear substrates. Dimerization is critical for connecting the scaffolded ERK complex to cognate cytoplasmic substrates, while nuclear substrates are activated by ERK monomers. Furthermore, blocking ERK cytoplasmic signals by preventing ERK dimerization, is sufficient for attenuating cellular proliferation, transformation and tumor development. These new results highlight the importance of ERK cytoplasmic signals, disclose an unprecedented functional relationship between scaffold proteins and ERK dimers and identify dimerization as a key determinant of the spatial specificity of ERK signals.

PubMed Disclaimer

Publication types

MeSH terms

Substances