Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;95(1):62-71.
doi: 10.1016/j.cmpb.2009.01.002. Epub 2009 Mar 13.

Interactive image analysis programs for quantifying injury-induced axonal beading and microtubule disruption

Affiliations

Interactive image analysis programs for quantifying injury-induced axonal beading and microtubule disruption

Devrim Kilinc et al. Comput Methods Programs Biomed. 2009 Jul.

Abstract

Focal axonal beading and focal disruption of microtubule structure are characteristic to traumatic axonal injury. We have recently reproduced these morphological and structural changes in our in vitro model system [D. Kilinc, G. Gallo, K.A. Barbee, Mechanically induced membrane poration causes axonal beading and localized cytoskeletal damage, Exp. Neurol. 212 (2008) 422-430]. In order to measure bead formation objectively, an observer-independent quantification of beading was necessary. In addition, a quantitative measure for the extent of co-localization of axonal beads and microtubule disruptions was required to establish a causal relationship between focal cytoskeletal damage and bead formation. In this paper we describe Matlab-based, interactive image analysis programs for axonal beading quantification and co-localization analysis. Injury-induced increases in the axonal beading could be successfully detected using the bead analysis program.

PubMed Disclaimer

Publication types

LinkOut - more resources