Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes
- PMID: 19287394
- PMCID: PMC2664327
- DOI: 10.1038/nmeth.1311
Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes
Abstract
Amplification artifacts introduced during library preparation for the Illumina Genome Analyzer increase the likelihood that an appreciable proportion of these sequences will be duplicates and cause an uneven distribution of read coverage across the targeted sequencing regions. As a consequence, these unfavorable features result in difficulties in genome assembly and variation analysis from the short reads, particularly when the sequences are from genomes with base compositions at the extremes of high or low G+C content. Here we present an amplification-free method of library preparation, in which the cluster amplification step, rather than the PCR, enriches for fully ligated template strands, reducing the incidence of duplicate sequences, improving read mapping and single nucleotide polymorphism calling and aiding de novo assembly. We illustrate this by generating and analyzing DNA sequences from extremely (G+C)-poor (Plasmodium falciparum), (G+C)-neutral (Escherichia coli) and (G+C)-rich (Bordetella pertussis) genomes.
Figures




References
-
- Goman M, et al. The establishment of genomic DNA libraries for the human malaria parasite Plasmodium falciparum and identification of individual clones by hybridisation. Mol Biochem Parasitol. 1982;5:391–400. - PubMed
-
- Camargo AA, Fischer K, Lanzer M, del Portillo HA. Construction and characterization of a Plasmodium vivax genomic library in yeast artificial chromosomes. Genomics. 1997;42:467–473. - PubMed
-
- de Bruin D, Lanzer M, Ravetch JV. Characterization of yeast artificial chromosomes from Plasmodium falciparum: construction of a stable, representative library and cloning of telomeric DNA fragments. Genomics. 1992;14:332–339. - PubMed
-
- Triglia T, Kemp DJ. Large fragments of Plasmodium falciparum DNA can be stable when cloned in yeast artificial chromosomes. Mol Biochem Parasitol. 1991;44:207–211. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials