Elevated extracellular K+ inhibits apoptosis of corneal epithelial cells exposed to UV-B radiation
- PMID: 19289117
- DOI: 10.1016/j.exer.2009.02.023
Elevated extracellular K+ inhibits apoptosis of corneal epithelial cells exposed to UV-B radiation
Abstract
The goal of this study was to determine if the high [K(+)] in tears, 20-25 mM, serves to protect corneal epithelial cells from going into apoptosis after exposure to ambient UV-B radiation. Human corneal-limbal epithelial (HCLE) cells in culture were exposed to UV-B at doses of 50-200 mJ/cm(2) followed by measurement of K(+) channel activation and activity of apoptotic pathways. Patch-clamp recording showed activation of K(+) channels after UV-B exposure at 80 mJ/cm(2) or 150 mJ/cm(2) and a decrease in UV-induced K(+) efflux with increasing [K(+)](o). The UV-activated current was partially blocked by the specific K(+) channel blocker, BDS-1. DNA fragmentation, as measured by the TUNEL assay, was induced after exposure to UV-B at 100-200 mJ/cm(2). DNA fragmentation was significantly decreased when cells were incubated in 25, 50 or 100mM K(o)(+) after exposure to UV-B. The effector caspase, caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), but there was a significant decrease in activation when the cells were incubated in 25, 50 or 100mM K(o)(+) following exposure to UV-B. A decrease in mitochondrial potential, a possible activator of caspase-3, occurred after exposure to UV-B at 100-200 mJ/cm(2). This decrease in mitochondrial potential was prevented by 100mM K(o)(+); however, 25 or 50mM K(o)(+) provided minimal protection. Caspase-9, which is in the pathway from mitochondrial potential change to caspase-3 activation, showed little activation by UV-B radiation. Caspase-8, an initiator caspase that activates caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), and this UV-activation was significantly reduced by 25-100mM K(o)(+). The data show that the physiologically relevant [K(+)](o) of 25 mM can inhibit UV-B induced activation of apoptotic pathways. This suggests that the relatively high [K(+)] in tears reduces loss of K(+) from corneal epithelial cells in response to UV exposure, thereby contributing to the protection of the ocular surface from ambient UV radiation.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
