Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 15;81(8):2991-3000.
doi: 10.1021/ac802615r.

Direct profiling and imaging of epicuticular waxes on Arabidopsis thaliana by laser desorption/ionization mass spectrometry using silver colloid as a matrix

Affiliations

Direct profiling and imaging of epicuticular waxes on Arabidopsis thaliana by laser desorption/ionization mass spectrometry using silver colloid as a matrix

Sangwon Cha et al. Anal Chem. .

Abstract

Colloidal silver laser desorption/ionization (LDI) mass spectrometry (MS) was employed to directly profile and image epicuticular wax metabolites on a variety of different surfaces of Arabidopsis thaliana leaves and flowers. Major cuticular wax compounds, such as very long-chain fatty acids, alcohols, alkanes, and ketones, were successfully detected as silver adduct ions. The surface metabolites of different flower organs (carpels, petals, and sepals) were profiled for the first time at a spatial resolution of approximately 100 microm. In addition, mass spectral profiles and images were collected from wild type and a mutant strain, which carried alleles that affect the surface constituents of this organism. One of these mutant alleles (cer2-2) is in a gene whose biochemical functionality is still unclear, although its effect on normal epicuticular wax deposition was the characteristic that led to its original identification. Variations of wax products between different spatial locations for wild type and for a mutant strain were investigated by normalizing the ion intensities to a reference peak ([(107)Ag + (109)Ag](+)). The spatially resolved surface metabolite profiling data of this mutant has provided new insights into the complexity of epicuticular wax deposition at the cellular-resolution scale. This MS-based metabolite imaging technology has the potential to provide valuable data for dissecting metabolism in multicellular organism at the level of single cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources