Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Mar;228(1):225-40.
doi: 10.1111/j.1600-065X.2008.00755.x.

TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes

Affiliations
Review

TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes

Michael Karin et al. Immunol Rev. 2009 Mar.

Abstract

Nearly two decades after the initial cloning and identification of the founding father of the tumor necrosis factor receptor (TNFR) family, much has been learned about the mechanisms by which these receptors signal to critical transcription factors and other targets that regulate gene expression and cellular physiology. Mitogen-activated protein kinases (MAPKs) and inhibitor of nuclear factor (NF)-kappaB (I kappaB) kinases (IKKs) were identified early on as the upstream kinases responsible for activation of activator-protein 1 (AP-1) and NF-kappaB, respectively, and later on for their ability to control life-or-death decisions in TNF-stimulated cells. Both of these critical pathways are regulated at the level of MAPK kinase kinases (MAP3Ks), after which point they diverge. Recent work, however, illustrates that protein ubiquitination cascades play a critical initiating role in TNFR signaling and account for spatial and temporal separation of IKK and MAPK signaling cascades and thereby determine biological specificity and outcome. Cellular inhibitors of apoptosis (cIAPs) 1 and 2 are ubiquitin (Ub) ligases (E3s) that mediate canonical Lys48-linked ubiquitination of TNFR-associated factor 3 (TRAF3), marking it for subsequent degradation by the proteasome. TRAF3 degradation releases the brake on TRAF2/6:MAP3K signaling complexes responsible for MAPK activation, leading to their translocation from the cytoplasmic segment of the receptor to the cytosol where they initiate MAPK phosphorylation and activation. By contrast, IKK activation proceeds considerably faster than MAPK activation, takes place at the receptor, and is independent of cIAP1/2 activity and TRAF3 degradation. This arrangement may be important for ensuring the proper delivery of NF-kappaB-dependent survival signals and conversion of JNK-promoted death signals to proliferative ones.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources