The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern
- PMID: 19291377
- DOI: 10.1007/s10827-009-0140-z
The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern
Abstract
In many rhythmic behaviors, phasic sensory feedback modifies the motor pattern. This modification is assumed to depend on feedback sign (positive vs. negative). While on a phenomenological level feedback sign is well defined, many sensory pathways also process antagonistic, and possibly contradictory, sensory information. We here model the locust flight pattern generator and proprioceptive feedback provided by the tegula wing receptor to test the functional significance of sensory pathways processing antagonistic information. We demonstrate that the tegula provides delayed positive feedback via interneuron 301, while all other pathways provide negative feedback. Contradictory to previous assumptions, the increase of wing beat frequency when the tegula is activated during flight is due to the positive feedback. By use of an abstract model we reveal that the regulation of motor pattern frequency by sensory feedback critically depends on the interaction of positive and negative feedback, and thus on the weighting of antagonistic pathways.
Similar articles
-
Alteration of bursting properties in interneurons during locust flight.J Neurophysiol. 1993 Nov;70(5):2148-60. doi: 10.1152/jn.1993.70.5.2148. J Neurophysiol. 1993. PMID: 8294976
-
Frequency control of motor patterning by negative sensory feedback.J Neurosci. 2007 Aug 29;27(35):9319-28. doi: 10.1523/JNEUROSCI.0907-07.2007. J Neurosci. 2007. PMID: 17728446 Free PMC article.
-
Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.J Neurophysiol. 1997 Sep;78(3):1276-84. doi: 10.1152/jn.1997.78.3.1276. J Neurophysiol. 1997. PMID: 9310419
-
[The central effects of interoceptive signalization].Fiziol Zh Im I M Sechenova. 1995 Sep;81(9):1-12. Fiziol Zh Im I M Sechenova. 1995. PMID: 8581041 Review. Russian. No abstract available.
-
Sensors and sensory processing for airborne vibrations in silk moths and honeybees.Sensors (Basel). 2013 Jul 19;13(7):9344-63. doi: 10.3390/s130709344. Sensors (Basel). 2013. PMID: 23877129 Free PMC article. Review.
Cited by
-
Neural circuit flexibility in a small sensorimotor system.Curr Opin Neurobiol. 2011 Aug;21(4):544-52. doi: 10.1016/j.conb.2011.05.019. Epub 2011 Jun 30. Curr Opin Neurobiol. 2011. PMID: 21689926 Free PMC article. Review.
-
The stomatogastric nervous system as a model for studying sensorimotor interactions in real-time closed-loop conditions.Front Comput Neurosci. 2012 Mar 14;6:13. doi: 10.3389/fncom.2012.00013. eCollection 2012. Front Comput Neurosci. 2012. PMID: 22435059 Free PMC article.
-
Using computational and mechanical models to study animal locomotion.Integr Comp Biol. 2012 Nov;52(5):553-75. doi: 10.1093/icb/ics115. Epub 2012 Sep 16. Integr Comp Biol. 2012. PMID: 22988026 Free PMC article.
-
Characterization of thoracic motor and sensory neurons and spinal nerve roots in canine degenerative myelopathy, a potential disease model of amyotrophic lateral sclerosis.J Neurosci Res. 2014 Apr;92(4):531-41. doi: 10.1002/jnr.23332. Epub 2013 Dec 21. J Neurosci Res. 2014. PMID: 24375814 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical