Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;10(1):252-7.
doi: 10.1208/s12249-009-9201-x. Epub 2009 Mar 17.

The abbreviated impactor measurement (AIM) concept: part II--Influence of evaporation of a volatile component-evaluation with a "droplet-producing" pressurized metered dose inhaler (pMDI)-based formulation containing ethanol as cosolvent

Affiliations

The abbreviated impactor measurement (AIM) concept: part II--Influence of evaporation of a volatile component-evaluation with a "droplet-producing" pressurized metered dose inhaler (pMDI)-based formulation containing ethanol as cosolvent

J P Mitchell et al. AAPS PharmSciTech. 2009.

Abstract

The abbreviated impactor measurement (AIM) concept is a potential solution to the labor-intensive full-resolution cascade impactor (CI) methodology for inhaler aerosol aerodynamic particle size measurement. In this validation study, the effect of increasing the internal dead volume on determined mass fractions relating to aerodynamic particle size was explored with two abbreviated impactors both based on the Andersen nonviable cascade impactor (ACI) operating principle (Copley fast screening Andersen impactor [C-FSA] and Trudell fast screening Andersen impactor [T-FSA]). A pressurized metered dose inhaler-delivered aerosol producing liquid ethanol droplets after propellant evaporation was chosen to characterize these systems. Measures of extrafine, fine, and coarse particle mass fractions from the abbreviated systems were compared with corresponding data obtained by a full-resolution ACI. The use of liquid ethanol-sensitive filter paper provided insight by rendering locations visible where partly evaporated droplets were still present when the "droplet-producing" aerosol was sampled. Extrafine particle fractions based on impactor-sized mass were near equivalent in the range 48.6% to 54%, comparing either abbreviated system with the benchmark ACI-measured data. The fine particle fraction of the impactor-sized mass determined by the T-FSA (94.4 +/- 1.7%) was greater than using the C-FSA (90.5 +/- 1.4%) and almost identical with the ACI-measured value (95.3 +/- 0.4%). The improved agreement between T-FSA and ACI is likely the result of increasing the dead space between the entry to the induction port and the uppermost impaction stage, compared with that for the C-FSA. This dead space is needed to provide comparable conditions for ethanol evaporation in the uppermost parts of these impactors.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Comparison of C-FSA and T-FSA to ACI for ethanol-containing particles produced by Qvar-80
Fig. 2
Fig. 2
Comparison of five actuation/measurement data from C-FSA and T-FSA to ACI for ethanol-containing particles produced by Qvar-80
Fig. 3
Fig. 3
a and b Ethanol-sensitive paper showing the presence of partly evaporated particles from Qvar-80 on the uppermost stages of ACI and C-FSA respectively

Similar articles

Cited by

References

    1. J. P. Mitchell, M. W. Nagel, V. Avvakoumova, H. Mackay, and R. Ali. The abbreviated impactor measurement (AIM) concept: part-1—influence of particle bounce and re-entrainment—evaluation with a mid-size range “dry” pressurized metered dose inhaler-based formulation. AAPS PharmSciTech. in press (2008). - PMC - PubMed
    1. European Pharmacopeia—section 2.9.18—preparations for inhalation: aerodynamic assessment of fine particles. European Pharmacopeia: 5th Edn. Council of Europe, 67075 Strasbourg, France, pp. 2799–2811 (2005).
    1. United States Pharmacopeia; USP 30-NF 25; Chapter 601—physical tests and determinations: aerosols. United States Pharmacopeia, Rockville, MD, USA, pp. 220–240 (2007).
    1. J. P. Mitchell. The abbreviated impactor measurement (AIM) concept for aerodynamic particle size distribution (APSD) in a quality-by-design (QbD) environment. Proc. Biennial IPAC-RS Conference, Bethesda, MD, USA. 2008. Available at http://www.ipacrs.com/ipac2008.html. Accessed 5 October 2008.
    1. Stein S. W., Stefely J. S. Reinventing metered dose inhalers: from poorly efficient CFC MDIs to highly efficient HFA MDIs. Drug Deliv. Technol. 2003;3(1):46–51.

Publication types

LinkOut - more resources