Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;50(2):112-21.
doi: 10.1093/ilar.50.2.112.

Gene therapy for lysosomal storage diseases (LSDs) in large animal models

Affiliations
Review

Gene therapy for lysosomal storage diseases (LSDs) in large animal models

Mark Haskins. ILAR J. 2009.

Abstract

Lysosomal storage diseases (LSDs) are inherited metabolic disorders caused by deficient activity of a single lysosomal enzyme or other defects resulting in deficient catabolism of large substrates in lysosomes. There are more than 40 forms of inherited LSDs known to occur in humans, with an aggregate incidence estimated at 1 in 7,000 live births. Clinical signs result from the inability of lysosomes to degrade large substrates; because most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems. Thus LSDs are associated with high morbidity and mortality and represent a significant burden on patients, their families, the health care system, and society. Because lysosomal enzymes are trafficked by a mannose 6-phosphate receptor mechanism, normal enzyme provided to deficient cells can be localized to the lysosome to reduce and prevent storage. However, many LSDs remain untreatable, and gene therapy holds the promise for effective therapy. Other therapies for some LSDs do exist, or are under evaluation, including heterologous bone marrow or cord blood transplantation (BMT), enzyme replacement therapy (ERT), and substrate reduction therapy (SRT), but these treatments are associated with significant concerns, including high morbidity and mortality (BMT), limited positive outcomes (BMT), incomplete response to therapy (BMT, ERT, and SRT), life-long therapy (ERT, SRT), and cost (BMT, ERT, SRT). Gene therapy represents a potential alternative, albeit with its own attendant concerns, including levels and persistence of expression and insertional mutagenesis resulting in neoplasia. Naturally occurring animal homologues of LSDs have been described in all common domestic animals (and in some that are less common) and these animal models play a critical role in evaluating the efficacy and safety of therapy.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Baker HJ, Jr, Lindsey JR, McKhann GM, Farrell DF. Neuronal GM1 gangliosidosis in a Siamese cat with beta-galactosidase deficiency. Science. 1971;174:838. - PubMed
    1. Barranger JM, Novelli EA. Gene therapy for lysosomal storage disorders. Expert Opin Biol Ther. 2001;1:857–867. - PubMed
    1. Barsoum SC, Milgram W, Mackay W, Coblentz C, Delaney KH, Kwiecien JM, Kruth SA, Chang PL. Delivery of recombinant gene product to canine brain with the use of microencapsulation. J Lab Clin Med. 2003;142:399–413. - PubMed
    1. Baskin GB, Ratterree M, Davison BB, Falkenstein KP, Clarke MR, England JD, Vanier MT, Luzi P, Rafi MA, Wenger DA. Genetic galactocerebrosidase deficiency (globoid cell leukodystrophy, Krabbe disease) in rhesus monkeys (Macaca mulatta) Lab Anim Sci. 1998;48:476–482. - PubMed
    1. Beaty RM, Jackson M, Peterson D, Bird A, Brown T, Benjamin DK, Jr, Juopperi T, Kishnani P, Boney A, Chen YT, Koeberl DD. Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type 1a, with adeno-associated virus (AAV) vectors. Gene Ther. 2002;9:1015–1022. - PubMed

Publication types

MeSH terms