Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Nov 1;290(2):312-9.
doi: 10.1016/0003-9861(91)90546-u.

Deantigenation of human erythrocytes by bacterial glycosidases--evidence for the noninvolvement of medium-sized glycosphingolipids in the Dolichos biflorus lectin hemagglutination

Affiliations
Comparative Study

Deantigenation of human erythrocytes by bacterial glycosidases--evidence for the noninvolvement of medium-sized glycosphingolipids in the Dolichos biflorus lectin hemagglutination

P Falk et al. Arch Biochem Biophys. .

Abstract

Fresh human A1 erythrocytes, washed and pretreated in phosphate buffer with or without papain, were incubated at 37 degrees C with blood group-degrading enzymes from the human fecal Ruminococcus torques strain IX-70. The effects were assayed as changes in hemagglutination patterns, and blood group activities of alkali stable glycolipid extracts from the enzyme-treated cells using Dolichos biflorus anti-A1 lectin, Ulex europaeus type 1 anti-H lectin, and various monoclonal anti-A antibodies. Hemolysis was negligible (less than or equal to 1% after 6 h), and the osmotic fragility increased slightly only after papain treatment. The papain-untreated A1 erythrocytes lost D. biflorus agglutinability within minutes at room temperature with the unfractionated bacterial enzyme mixture IX-70 (42 mU 1,3-alpha-N-acetylgalactosaminidase (alpha-GalNAc'ase)/ml), but remained A active by strong agglutination with BioClone anti-A antibody even after 6 h of incubation. Thin layer chromatographic (TLC) immunostaining of extracted lipids showed hydrolysis of D. biflorus binding glycosphingolipids with more than six monosaccharides after 1 h, i.e., at a slower rate than the loss of D. biflorus agglutinability. Disappearance of these glycosphingolipids after 1 h paralleled the appearance of U. europaeus agglutinability and the strong binding of this lectin to glycolipid extracts in TLC immunoassays. A partly purified 1,3-alpha-GalNAc'ase (XI-117) (100 mU/ml) and a 1,2-alpha-fucosidase fraction (XI-50) containing alpha-GalNAc'ase (10 mU/ml) did not degrade blood group A active glycosphingolipids but completely abolished the D. biflorus agglutinability within 6 h. Papain pretreatment exposed U. europaeus receptors on the cell surface without changing the A1 hemagglutination pattern. It also facilitated a complete degradation of D. biflorus and U. europaeus reactive glycolipids with the IX-70 enzyme mixture within 6 h. The D. biflorus lectin was a good discriminator of A1/A2 subjects using erythrocyte lipid extracts but had a low affinity for the blood group A type 3 and type 4 glycosphingolipids in the TLC-overlay technique. In conclusion this study shows that (i) loss of D. biflorus A1 hemagglutination does not correlate with a loss of D. biflorus binding glycosphingolipids and (ii) loss of D. biflorus binding glycosphingolipids does not correlate with a loss of D. biflorus agglutinability. The results indicate that the serological D. biflorus agglutinability of A1 erythrocytes is not dependent on medium-sized glycosphingolipids (hexa- to dodecaglycosylceramides).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources