Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Apr;72(2):279-85.
doi: 10.1111/j.1365-2958.2009.06656.x. Epub 2009 Mar 4.

Mechanisms of polar arrest of a replication fork

Affiliations
Free article
Review

Mechanisms of polar arrest of a replication fork

Daniel L Kaplan et al. Mol Microbiol. 2009 Apr.
Free article

Abstract

A DNA replication terminator sequence blocks an approaching replication fork when the moving replisome approaches from just one direction. The mechanism underlying polar arrest has been debated for years, but recent work has helped to reveal how a replication fork is blocked in Escherichia coli. Early work suggested that asymmetric interaction between terminator protein and terminator DNA contributes to polar fork arrest. A later study demonstrated that if the terminator DNA is partially unwound, the resulting melted DNA could bind tightly to the terminator protein, suggesting a mechanism for polar arrest that involves a locked complex. However, recent evidence suggests that the terminator protein-DNA contacts are not sufficient for polar arrest in vivo. Furthermore, polar arrest of a replication fork still occurs in the absence of a locked complex between the terminator protein and DNA. In E. coli and Bacillus subtilis, the bound terminator protein makes protein-protein contacts with the replication fork helicase, and these contacts are critical in blocking progression of the advancing fork. Thus, we propose that interactions between the replication fork helicase and terminator protein are the primary mechanism for polar fork arrest in bacteria, and that this primary mechanism is modulated by asymmetric contacts between the terminator protein and its cognate DNA sequence. In yeast, terminator sequences are present in rDNA non-transcribed spacers and a region immediately preceding the mating type switch locus Mat1, and the mechanism of polar arrest at these regions is beginning to be elucidated.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources