Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct 1;279 ( Pt 1)(Pt 1):175-87.
doi: 10.1042/bj2790175.

Evidence for sterol-independent regulation of low-density lipoprotein receptor activity in Hep-G2 cells

Affiliations

Evidence for sterol-independent regulation of low-density lipoprotein receptor activity in Hep-G2 cells

J L Ellsworth et al. Biochem J. .

Abstract

The relationship between the serum factor(s)-mediated induction of low-density lipoprotein (LDL) receptor activity and changes in cellular cholesterol metabolism was examined in the human hepatoma cell line Hep-G2. Relative to incubation with serum-free media [Eagle's minimal essential medium (MEM) control], short-term (less than 8 h) incubation with medium containing 15% of either calf serum (MEM + serum) or the d greater than 1.25 fraction of calf serum (MEM + d greater than 1.25) produced a time- and concentration-dependent increase in the uptake of 125I-LDL. Immunoblotting with anti-(LDL receptor) antibodies demonstrated that this was correlated with a 2-fold increase in the amount of the mature 136,000 Da LDL receptor protein in detergent-solubilized Hep-G2 cell membranes. Incubation with MEM + serum, but not MEM + d greater than 1.25, increased the efflux of radiolabelled cholesterol from Hep-G2 cells. However, the induction of 125I-LDL uptake by MEM + d greater than 1.25 (2.3-fold) and MEM + serum (2.2-fold) was virtually identical. Addition of the d less than 1.063 lipoproteins of calf serum to MEM + d greater than 1.25 at their original or three times their serum concentration decreased the induction of 125I-LDL uptake by MEM + d greater than 1.25 by only 20-30%. Together, these results suggest that the stimulation of 125I-LDL uptake was not due to the presence of high-density lipoprotein, the absence of LDL or the stimulation of cholesterol efflux. MEM + serum stimulated 125I-LDL uptake in cells cholesterol-loaded by incubation with rat very-low-density lipoprotein with beta electrophoretic mobility (beta-VLDL). Compared to incubation with the MEM control, either MEM + serum or MEM + d greater than 1.25 produced time-dependent increases in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase which also occurred in cholesterol-loaded cells. However, cholesterol biosynthesis, whether measured from 3H2O, [14C]acetate or [3H]mevalonic acid, was not increased. Incubation with MEM + serum or MEM + d greater than 1.25 did not affect [3H]oleate incorporation into cellular cholesteryl esters, hydrolysis of intracellular [3H]cholesteryl esters or the cellular mass of unesterified or esterified cholesterol. Incubation with MEM + serum or MEM + d greater than 1.25 produced a transient increase in the level of LDL receptor mRNA, reaching a maximum of 5-10-fold by 2 h and decreasing to near baseline levels by 4 h. Actinomycin D blocked the serum-factor-mediated induction of LDL receptor mRNA.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Arteriosclerosis. 1990 Jan-Feb;10(1):119-28 - PubMed
    1. Nature. 1990 Feb 1;343(6257):425-30 - PubMed
    1. J Biol Chem. 1990 Mar 25;265(9):5145-9 - PubMed
    1. J Biol Chem. 1990 Jun 5;265(16):9381-91 - PubMed
    1. J Lipid Res. 1990 Nov;31(11):2067-78 - PubMed

Publication types

MeSH terms