Flow dynamics in lumboperitoneal shunts and their implications in vivo
- PMID: 19301965
- DOI: 10.3171/2009.2.JNS08912
Flow dynamics in lumboperitoneal shunts and their implications in vivo
Abstract
Object: Lumboperitoneal shunting is the standard treatment for pseudotumour cerebri or idiopathic intracranial hypertension. Complications are common, particularly the problem of overdrainage leading to low pressure symptoms. The authors designed a simple experiment using catheters of different lengths that drained at different pressure heads and with different vertical drops to study the flow characteristics in these shunts and determine the optimal catheter placement and length that would reduce the occurrence of low pressure headaches.
Methods: The flow rates through catheters of 3 different lengths (60, 83, and 100 cm) with the same internal radius, at 3 different pressure heads (15, 25, and 35 cm H2O to simulate 3 different placements in the lumbar theca), and 3 different vertical drops (10, 20, and 30 cm to simulate the possible effect of siphoning) were measured and the results analyzed.
Results: Application of Poiseuille's law and Bernoulli's principle to the experimental design shows that the volume of flow is directly proportional to the sum of the pressure head and the vertical drop and inversely proportional to the length of the catheter. The flow rate through the standard catheter lengths over the course of 24 hours can be abnormally high. An attempt to predict the optimal catheter length was made.
Conclusions: Although the catheter position in the theca and abdomen cannot be altered significantly and the internal radius of the tube cannot be reduced further without increasing the risk of blockage, the length of the tube can be increased to combat overdrainage. The authors suggest that currently available catheters are too short.
MeSH terms
LinkOut - more resources
Full Text Sources