Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase
- PMID: 19304853
- PMCID: PMC2681899
- DOI: 10.1128/JB.00811-08
Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase
Abstract
We characterized the nanLET operon in Bacteroides fragilis, whose products are required for the utilization of the sialic acid N-acetyl neuraminic acid (NANA) as a carbon and energy source. The first gene of the operon is nanL, which codes for an aldolase that cleaves NANA into N-acetyl mannosamine (manNAc) and pyruvate. The next gene, nanE, codes for a manNAc/N-acetylglucosamine (NAG) epimerase, which, intriguingly, possesses more similarity to eukaryotic renin binding proteins than to other bacterial NanE epimerase proteins. Unphosphorylated manNAc is the substrate of NanE, while ATP is a cofactor in the epimerase reaction. The third gene of the operon is nanT, which shows similarity to the major transporter facilitator superfamily and is most likely to be a NANA transporter. Deletion of any of these genes eliminates the ability of B. fragilis to grow on NANA. Although B. fragilis does not normally grow with manNAc as the sole carbon source, we isolated a B. fragilis mutant strain that can grow on this substrate, likely due to a mutation in a NAG transporter; both manNAc transport and NAG transport are affected in this strain. Deletion of the nanE epimerase gene or the rokA hexokinase gene, whose product phosphorylates NAG, in the manNAc-enabled strain abolishes growth on manNAc. Thus, B. fragilis possesses a new pathway of NANA utilization, which we show is also found in other Bacteroides species.
Figures








Similar articles
-
Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli.J Bacteriol. 1999 Jan;181(1):47-54. doi: 10.1128/JB.181.1.47-54.1999. J Bacteriol. 1999. PMID: 9864311 Free PMC article.
-
Production of N-Acetyl-d-neuraminic Acid by Whole Cells Expressing Bacteroides thetaiotaomicron N-Acetyl-d-glucosamine 2-Epimerase and Escherichia coli N-Acetyl-d-neuraminic Acid Aldolase.J Agric Food Chem. 2019 Jun 5;67(22):6285-6291. doi: 10.1021/acs.jafc.9b01839. Epub 2019 May 28. J Agric Food Chem. 2019. PMID: 31117501
-
The first committed step in the biosynthesis of sialic acid by Escherichia coli K1 does not involve a phosphorylated N-acetylmannosamine intermediate.Mol Microbiol. 2003 Nov;50(3):961-75. doi: 10.1046/j.1365-2958.2003.03741.x. Mol Microbiol. 2003. PMID: 14617154
-
Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis.Biol Chem. 2009 Jul;390(7):591-9. doi: 10.1515/BC.2009.073. Biol Chem. 2009. PMID: 19426133 Review.
-
Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases.Biosci Biotechnol Biochem. 2016 Jul;80(7):1294-305. doi: 10.1080/09168451.2016.1166934. Epub 2016 Mar 31. Biosci Biotechnol Biochem. 2016. PMID: 27031293 Review.
Cited by
-
Intestinal inflammation alters mucosal carbohydrate foraging and monosaccharide incorporation into microbial glycans.Cell Microbiol. 2021 Jan;23(1):e13269. doi: 10.1111/cmi.13269. Epub 2020 Oct 6. Cell Microbiol. 2021. PMID: 32975882 Free PMC article.
-
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus.Appl Environ Microbiol. 2012 May;78(9):3407-15. doi: 10.1128/AEM.07395-11. Epub 2012 Feb 17. Appl Environ Microbiol. 2012. PMID: 22344665 Free PMC article.
-
Oral Dysbiotic Communities and Their Implications in Systemic Diseases.Dent J (Basel). 2018 Apr 16;6(2):10. doi: 10.3390/dj6020010. Dent J (Basel). 2018. PMID: 29659479 Free PMC article. Review.
-
Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species.Biochem J. 2014 Mar 15;458(3):499-511. doi: 10.1042/BJ20131415. Biochem J. 2014. PMID: 24351045 Free PMC article.
-
Sialidases from gut bacteria: a mini-review.Biochem Soc Trans. 2016 Feb;44(1):166-75. doi: 10.1042/BST20150226. Biochem Soc Trans. 2016. PMID: 26862202 Free PMC article. Review.
References
-
- Angata, T., and A. Varki. 2002. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102439-469. - PubMed
-
- Bravo, I. G., S. Garcia-Vallve, A. Romeu, and A. Reglero. 2004. Prokaryotic origin of cytidylyltransferases and alpha-ketoacid synthases. Trends Microbiol. 12120-128. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases