Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jun;122(3):264-80.
doi: 10.1016/j.pharmthera.2009.03.001. Epub 2009 Mar 21.

Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy

Affiliations
Review

Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy

Asterios S Tsiftsoglou et al. Pharmacol Ther. 2009 Jun.

Abstract

Human leukemias are considered clonal hematological malignancies initiated by chromosomal aberrations or epigenetic alterations occurring at the level of either pluripotent hematopoietic stem cells (HSCs) or early multipotent progenitors (MPPs). Leukemic cells are transformed, immortalized, actively proliferating cells that are still able to differentiate into cells resembling mature blood cells. Future therapies of leukemias require identification of molecular targets involved in hematopoiesis under normal and leukemic conditions and detailed understanding of the interactions between normal hematopoietic and leukemic cells within the bone marrow micro-environment. This review presents the basic aspects of hematopoiesis and highlights multilevel exploitable targets for leukemia therapy. These include HSC niche components, signaling pathways (SCF/c-kit-R, EPO-R-JAK2/STAT, Wnt, Notch, HOX), inducer-receptor interactions, superfine chromatin structure modifications, fused transcription factors, microRNAs and signaling of cell death through the Bcl-2 apoptotic switch (BH3-only proteins). The classes of therapeutics developed or being under development to eradicate human leukemias include novel antimetabolites, DNA hypomethylating agents, histone deacetylation inhibitors (HDACIs), retinoids and other inducers of differentiation, targeted monoclonal antibodies raised against cell surface proteins, pro-apoptotic receptor agonists (PARAs), BH3 peptidomimetics, cell cycle inhibitors, siRNAs and perhaps microRNAs. Some of these agents induce terminal differentiation while others promote cell cycle arrest and apoptosis in leukemia cells. At last but not least, this article describes the mechanisms of removal of damaged/harmful cells from organs since impairment in clearance of such cells can lead to autoimmune disorders by self-antigens.

PubMed Disclaimer

MeSH terms

Substances