Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Apr;15(2):180-93.
doi: 10.1177/1073858408329509.

Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier

Affiliations
Review

Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier

Hartwig Wolburg et al. Neuroscientist. 2009 Apr.

Abstract

The blood-brain barrier (BBB) does not exclusively refer to brain endothelial cells, which are the site of the barrier proper. In the past few years, it has become increasingly clear that BBB endothelial cells depend considerably on the brain microenvironment to a degree exceeding the environmental influence in other organs. The concept of the BBB has been continuously developed over the decades, culminating now in the recognition that endothelial cell function in the brain is not limited to simply mediating energy and oxygen transfer between blood and neural tissue. Endothelial cells are rather "Janus-headed beings" that are active partners of both luminal molecules and cells, as well as subendothelial cells such as pericytes, astrocytes, and neurons. In this overview, the authors present and discuss both the role of astroglial cells in managing the BBB and aspects of pathological alterations in the brain as far as the BBB is involved. After a brief introduction of the BBB that describes the structure and function of the brain capillary endothelial cells, the authors report on both the water channel protein aquaporin-4 (AQP4) in astrocytes and the extracellular matrix between astrocytes/pericytes and endothelial cells. The AQP4 has an important impact on the homeostasis in the brain parenchyma; however, the mechanistic cascade from the composition of the astrocyte membrane to the maintenance of BBB properties in the endothelial cells, including their tight junction formation, is still completely unknown.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources