Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;92(4):1785-95.
doi: 10.3168/jds.2008-1591.

Phenotypic and genetic relationships of common health disorders with milk and fat yield persistencies from producer-recorded health data and test-day yields

Affiliations
Free article

Phenotypic and genetic relationships of common health disorders with milk and fat yield persistencies from producer-recorded health data and test-day yields

J A D R N Appuhamy et al. J Dairy Sci. 2009 Apr.
Free article

Abstract

The objective of this study was to investigate phenotypic and genetic relationships of common health disorders in dairy cows with milk (PMY) and fat (PFY) yield persistencies. Health and production data from 398 commercial dairy herds were used. Disease traits were defined in binary form for individual lactations considering mastitis only during the first 100 d in milk (MAST1), only after 100 d in milk (MAST2), and at any stage of lactation (MAST), and reproductive disorders (REPRO), metabolic disorders (METAB), and lameness (LAME). The persistencies were defined to be uncorrelated with 305-d yields. Impact of the diseases on PMY and PFY were investigated separately in first (FL) and later (LL) lactations. Phenotypic associations of PMY and PFY with likelihood of diseases in current and subsequent lactations were examined using odds ratios from a logistic regression model. Linear-threshold sire-maternal grandsire models were used to estimate genetic correlations of displaced abomasums (DA), ketosis (KET), metritis (MET), MAST, MAST1, and MAST2 with PMY and PFY across parities. Metabolic diseases and REPRO had significantly positive relationships with PMY and PFY in both FL and LL. Significantly greater PMY and PFY were associated with MAST1 in LL. Significantly lower PMY and PFY were related to MAST2 in both FL and LL, whereas cows affected by MAST had significantly less persistent lactations. Incidence of MAST and MAST2 decreased with increasing PMY and PFY in the present and previous lactation. Heritability of disease incidences were 0.03 (DA), 0.01 (KET), 0.10 (MAST), 0.02 to 0.05 (MAST1), 0.02 (MAST2), and 0.04 to 0.10 (MET). Displaced abomasum, KET, MAST, MAST1, and MET had unfavorable genetic correlations of 0.35, 0.46, 0.17, 0.02, and 0.27 with PMY, and 0.16, 0.21, 0.07, 0.06, and 0.12 with PFY, respectively. Favorable genetic correlations were found for MAST2 with PMY (-0.24) and PFY (-0.04). Results suggest that diseases in early lactation increase persistency of milk and fat yield. Selection for greater lactation persistency must consider these antagonistic relationships.

PubMed Disclaimer

Publication types

LinkOut - more resources