Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 May;218(1):7-29.
doi: 10.1002/path.2518.

Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis

Affiliations
Review

Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis

Judith C Sluimer et al. J Pathol. 2009 May.

Abstract

The clinical complications of atherosclerosis are caused by thrombus formation, which in turn results from rupture of an unstable atherosclerotic plaque. The formation of microvessels (angiogenesis) in an atherosclerotic plaque contributes to the development of plaques, increasing the risk of rupture. Microvessel content increases with human plaque progression and is likely stimulated by plaque hypoxia, reactive oxygen species and hypoxia-inducible factor (HIF) signalling. The presence of plaque hypoxia is primarily determined by plaque inflammation (increasing oxygen demand), while the contribution of plaque thickness (reducing oxygen supply) seems to be minor. Inflammation and hypoxia are almost interchangeable and both stimuli may initiate HIF-driven angiogenesis in atherosclerosis. Despite the scarcity of microvessels in animal models, atherogenesis is not limited in these models. This suggests that abundant plaque angiogenesis is not a requirement for atherogenesis and may be a physiological response to the pathophysiological state of the arterial wall. However, the destruction of the integrity of microvessel endothelium likely leads to intraplaque haemorrhage and plaques at increased risk for rupture. Although a causal relation between the compromised microvessel structure and atherogenesis or between angiogenic stimuli and plaque angiogenesis remains tentative, both plaque angiogenesis and plaque hypoxia represent novel targets for non-invasive imaging of plaques at risk for rupture, potentially permitting early diagnosis and/or risk prediction of patients with atherosclerosis in the near future.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources