Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;53(4):528-33.
doi: 10.1111/j.1399-6576.2009.01905.x.

Dose-dependent effect of S(+) ketamine on post-ischemic endogenous neurogenesis in rats

Affiliations

Dose-dependent effect of S(+) ketamine on post-ischemic endogenous neurogenesis in rats

U Winkelheide et al. Acta Anaesthesiol Scand. 2009 Apr.

Abstract

Background: Ketamine is a non-competitive antagonist at N-methyl-D-aspartate (NMDA) receptors and reduces neuronal injury after cerebral ischemia by blocking the excitotoxic effects of glutamate. However, cerebral regeneration by means of endogenous neurogenesis may be impaired with blockade of NMDA receptors. The effects of S(+) ketamine on post-ischemic neurogenesis are unknown and investigated in this study.

Methods: Thirty-two male Sprague-Dawley rats were randomly assigned to the following treatment groups with intravenous S(+) ketamine anesthesia: S(+) ketamine 0.75 mg/kg/min with or without cerebral ischemia and S(+) ketamine 1.0 mg/kg/min with or without cerebral ischemia. Eight non-anesthetized, non-ischemic animals were investigated as naïve controls. Forebrain ischemia was induced by bilateral common carotid artery occlusion in combination with hemorrhagic hypotension. 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally for seven consecutive post-operative days. BrdU-positive neurons in the dentate gyrus and histopathological damage of the hippocampus were analyzed after 28 days.

Results: The number of new neurons was not affected by S(+) ketamine in the absence of cerebral ischemia. The ischemia-induced increase in neurogenesis was reduced by high-dose S(+) ketamine. Cell death of ischemic animals did not vary between low- and high-dose S(+) ketamine.

Conclusion: While low concentrations of S(+) ketamine allow an ischemia-induced increase in the number of new neurons, high S(+) ketamine concentrations block the post-ischemic increase in newly generated neurons. This effect is irrespective of the extent of other histopathological damage and in line with studies showing that NMDA receptor antagonists like MK-801 inhibit neurogenesis after cerebral ischemia.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources