Cardiac tissue engineering: implications for pediatric heart surgery
- PMID: 19319461
- PMCID: PMC2691807
- DOI: 10.1007/s00246-009-9405-6
Cardiac tissue engineering: implications for pediatric heart surgery
Abstract
Children with severe congenital malformations, such as single-ventricle anomalies, have a daunting prognosis. Heart transplantation would be a therapeutic option but is restricted due to a lack of suitable donor organs and, even in case of successful heart transplantation, lifelong immune suppression would frequently be associated with a number of serious side effects. As an alternative to heart transplantation and classical cardiac reconstructive surgery, tissue-engineered myocardium might become available to augment hypomorphic hearts and/or provide new muscle material for complex myocardial reconstruction. These potential applications of tissue engineered myocardium will, however, impose major challenges to cardiac tissue engineers as well as heart surgeons. This review will provide an overview of available cardiac tissue-engineering technologies, discuss limitations, and speculate on a potential application of tissue-engineered heart muscle in pediatric heart surgery.
Figures
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/ten.1999.5.103', 'is_inner': False, 'url': 'https://doi.org/10.1089/ten.1999.5.103'}, {'type': 'PubMed', 'value': '10358218', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10358218/'}]}
- Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1161/01.CIR.0000051460.85800.BB', 'is_inner': False, 'url': 'https://doi.org/10.1161/01.cir.0000051460.85800.bb'}, {'type': 'PubMed', 'value': '12600917', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12600917/'}]}
- Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/nature02460', 'is_inner': False, 'url': 'https://doi.org/10.1038/nature02460'}, {'type': 'PubMed', 'value': '15034594', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15034594/'}]}
- Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10444466', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10444466/'}]}
- Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 277:H433–H444 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO;2-X', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1097-0290(19990905)64:5<580::aid-bit8>3.0.co;2-x'}, {'type': 'PubMed', 'value': '10404238', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10404238/'}]}
- Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64:580–589 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
