Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jul;30(5):716-23.
doi: 10.1007/s00246-009-9405-6. Epub 2009 Mar 25.

Cardiac tissue engineering: implications for pediatric heart surgery

Affiliations
Review

Cardiac tissue engineering: implications for pediatric heart surgery

Wolfram-Hubertus Zimmermann et al. Pediatr Cardiol. 2009 Jul.

Abstract

Children with severe congenital malformations, such as single-ventricle anomalies, have a daunting prognosis. Heart transplantation would be a therapeutic option but is restricted due to a lack of suitable donor organs and, even in case of successful heart transplantation, lifelong immune suppression would frequently be associated with a number of serious side effects. As an alternative to heart transplantation and classical cardiac reconstructive surgery, tissue-engineered myocardium might become available to augment hypomorphic hearts and/or provide new muscle material for complex myocardial reconstruction. These potential applications of tissue engineered myocardium will, however, impose major challenges to cardiac tissue engineers as well as heart surgeons. This review will provide an overview of available cardiac tissue-engineering technologies, discuss limitations, and speculate on a potential application of tissue-engineered heart muscle in pediatric heart surgery.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Tissue engineering modalities enabling the generation of large macroscopically contracting tissue constructs: (1) bioengineering approach [27, 42], (2) biological assembly approach [36, 57], (3) cell sheet approach [19, 46], and (4) decellularization–recellularization approach [39]
Fig. 2
Fig. 2
Muscle formation in EHT. Actin staining (white in [a], green in [b]) denotes the formation of a dense network of muscle strands, which might in some cases reach a diameter of up to 200 μm. Images from [57] (a) and [36] (b). (Color figure online)
Fig. 3
Fig. 3
Schematic drawings of potential applications of tissue-engineered myocardium (gray) for left ventricular augmentation (top) or single-ventricle septation (bottom) in children with HLHS or DILV, respectively. RV: right ventricle; LV: left ventricle; SV: single ventricle

Similar articles

Cited by

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/ten.1999.5.103', 'is_inner': False, 'url': 'https://doi.org/10.1089/ten.1999.5.103'}, {'type': 'PubMed', 'value': '10358218', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10358218/'}]}
    2. Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1161/01.CIR.0000051460.85800.BB', 'is_inner': False, 'url': 'https://doi.org/10.1161/01.cir.0000051460.85800.bb'}, {'type': 'PubMed', 'value': '12600917', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12600917/'}]}
    2. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/nature02460', 'is_inner': False, 'url': 'https://doi.org/10.1038/nature02460'}, {'type': 'PubMed', 'value': '15034594', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15034594/'}]}
    2. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10444466', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10444466/'}]}
    2. Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 277:H433–H444 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO;2-X', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1097-0290(19990905)64:5<580::aid-bit8>3.0.co;2-x'}, {'type': 'PubMed', 'value': '10404238', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10404238/'}]}
    2. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64:580–589 - PubMed

Publication types