Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May 1;81(9):3623-9.
doi: 10.1021/ac900002u.

High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format

Affiliations
Free article

High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format

Jennifer Christina Ewald et al. Anal Chem. .
Free article

Abstract

Metabolomics is a founding pillar of quantitative biology and a valuable tool for studying metabolism and its regulation. Here we present a workflow for metabolomics in microplate format which affords high-throughput and yet quantitative monitoring of primary metabolism in microorganisms and in particular yeast. First, the most critical step of rapid sampling was adapted to a multiplex format by using fritted 96-well plates for cultivation, which ensure fast sample transfer and permit us to use well-established quenching in cold solvents. Second, extensive optimization of large-volume injection on a GC/TOF instrument provided the sensitivity necessary for robust quantification of 30 primary metabolites in 0.6 mg of yeast biomass. The metabolome profiles of baker's yeast cultivated in fritted well plates or in shake flasks were equivalent. Standard deviations of measured metabolites were between 10% and 50% within one plate. As a proof of principle we compared the metabolome of wild-type Saccharomyces cerevisiae and the single-deletion mutant Delta sdh1, which were clearly distinguishable by a 10-fold increase of the intracellular succinate concentration in the mutant. The described workflow allows the production of large amounts of metabolome samples within a day, is compatible with virtually all liquid extraction protocols, and paves the road to quantitative screens.

PubMed Disclaimer

Publication types

MeSH terms