Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory
- PMID: 19321751
- PMCID: PMC2667087
- DOI: 10.1073/pnas.0811054106
Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory
Abstract
The dentate gyrus (DG), a hippocampal subregion, continuously produces new neurons in the adult mammalian brain that become functionally integrated into existing neural circuits. To what extent this form of plasticity contributes to memory functions remains to be elucidated. Using mapping of activity-dependent gene expression, we visualized in mice injected with the birthdating marker 5-bromo-2'-deoxyuridine the recruitment of new neurons in a set of controlled water maze procedures that engage specific spatial memory processes and require hippocampal-cortical networks. Here, we provide new evidence that adult-generated hippocampal neurons make a specific but differential contribution to the processing of remote spatial memories. First, we show that new neurons in the DG are recruited into neuronal networks that support retrieval of remote spatial memory and that their activation is situation-specific. We further reveal that once selected, new hippocampal neurons are durably incorporated into memory circuits, and also that their recruitment into hippocampal networks contributes predominantly to the updating and strengthening of a previously encoded memory. We find that initial spatial training during a critical period, when new neurons are more receptive to surrounding neuronal activity, favors their subsequent recruitment upon remote memory retrieval. We therefore hypothesize that new neurons activated during this critical period become tagged so that once mature, they are preferentially recruited into hippocampal networks underlying remote spatial memory representation when encountering a similar experience.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Shors TJ, et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–376. - PubMed
-
- Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus. 2006;16:296–304. - PubMed
-
- Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2005;130:843–852. - PubMed
-
- Kee N, Teixeira CM, Wang AH, Frankland PW. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci. 2007;10:355–362. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
