Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana
- PMID: 19322583
- PMCID: PMC2687518
- DOI: 10.1007/s00425-009-0921-7
Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana
Abstract
Volatile organic compounds have been reported to serve some important roles in plant communication with other organisms, but little is known about the biological functions of most of these substances. To gain insight into this problem, we have compared differences in floral and vegetative volatiles between two closely related plant species with different life histories. The self-pollinating annual, Arabidopsis thaliana, and its relative, the outcrossing perennial, Arabidopsis lyrata, have markedly divergent life cycles and breeding systems. We show that these differences are in part reflected in the formation of distinct volatile mixtures in flowers and foliage. Volatiles emitted from flowers of a German A. lyrata ssp. petraea population are dominated by benzenoid compounds in contrast to the previously described sesquiterpene-dominated emissions of A. thaliana flowers. Flowers of A. lyrata ssp. petraea release benzenoid volatiles in a diurnal rhythm with highest emission rates at midday coinciding with observed visitations of pollinating insects. Insect feeding on leaves of A. lyrata ssp. petraea causes a variable release of the volatiles methyl salicylate, C11- and C16-homoterpenes, nerolidol, plus the sesquiterpene (E)-beta-caryophyllene, which in A. thaliana is emitted exclusively from flowers. An insect-induced gene (AlCarS) with high sequence similarity to the florally expressed (E)-beta-caryophyllene synthase (AtTPS21) from A. thaliana was identified from individuals of a German A. lyrata ssp. petraea population. Recombinant AlCarS converts the sesquiterpene precursor, farnesyl diphosphate, into (E)-beta-caryophyllene with alpha-humulene and alpha-copaene as minor products indicating its close functional relationship to the A. thaliana AtTPS21. Differential regulation of these genes in flowers and foliage is consistent with the different functions of volatiles in the two Arabidopsis species.
Figures







Similar articles
-
The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen.New Phytol. 2012 Mar;193(4):997-1008. doi: 10.1111/j.1469-8137.2011.04001.x. Epub 2011 Dec 20. New Phytol. 2012. PMID: 22187939
-
Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers.Plant J. 2005 Jun;42(5):757-71. doi: 10.1111/j.1365-313X.2005.02417.x. Plant J. 2005. PMID: 15918888
-
Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers.Plant Cell. 2003 Feb;15(2):481-94. doi: 10.1105/tpc.007989. Plant Cell. 2003. PMID: 12566586 Free PMC article.
-
The biochemistry of homoterpenes--common constituents of floral and herbivore-induced plant volatile bouquets.Phytochemistry. 2011 Sep;72(13):1635-46. doi: 10.1016/j.phytochem.2011.01.019. Epub 2011 Feb 19. Phytochemistry. 2011. PMID: 21334702 Review.
-
Functional evolution of biosynthetic enzymes that produce plant volatiles.Biosci Biotechnol Biochem. 2018 Feb;82(2):192-199. doi: 10.1080/09168451.2017.1422968. Epub 2018 Jan 17. Biosci Biotechnol Biochem. 2018. PMID: 29338642 Review.
Cited by
-
Identification of activation-tag Arabidopsis mutants with altered production of germination stimulants for Phelipanche ramosa (L.).Biotechnol Biotechnol Equip. 2014 Mar 4;28(2):199-207. doi: 10.1080/13102818.2014.911432. Epub 2014 Jul 31. Biotechnol Biotechnol Equip. 2014. PMID: 26740753 Free PMC article.
-
Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals.Ann Bot. 2023 Oct 4;132(1):1-14. doi: 10.1093/aob/mcad064. Ann Bot. 2023. PMID: 37220889 Free PMC article. Review.
-
Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis.Metabolites. 2013 Apr 9;3(2):223-42. doi: 10.3390/metabo3020223. Metabolites. 2013. PMID: 24957989 Free PMC article.
-
Ectopic terpene synthase expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors.Plant Physiol. 2014 Oct;166(2):779-97. doi: 10.1104/pp.114.247130. Epub 2014 Sep 3. Plant Physiol. 2014. PMID: 25187528 Free PMC article.
-
Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03.Plant Physiol. 2010 Jul;153(3):1293-310. doi: 10.1104/pp.110.154864. Epub 2010 May 12. Plant Physiol. 2010. PMID: 20463089 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/hdy.1989.56', 'is_inner': False, 'url': 'https://doi.org/10.1038/hdy.1989.56'}]}
- Abbott RJ, Gomes MF (1989) Population genetic structure and outcrossing rate of Arabidopsis thaliana (L) Heynh. Heredity 62:411–418
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s00438-002-0709-y', 'is_inner': False, 'url': 'https://doi.org/10.1007/s00438-002-0709-y'}, {'type': 'PubMed', 'value': '12207221', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12207221/'}]}
- Aubourg S, Lecharny A, Bohlmann J (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730–745 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1105/tpc.12.7.1093', 'is_inner': False, 'url': 'https://doi.org/10.1105/tpc.12.7.1093'}, {'type': 'PMC', 'value': 'PMC149051', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC149051/'}, {'type': 'PubMed', 'value': '10899976', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10899976/'}]}
- Blanc G, Barakat A, Guyot R, Cooke R, Delseny I (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1023/B:JOEC.0000006446.21160.c1', 'is_inner': False, 'url': 'https://doi.org/10.1023/b:joec.0000006446.21160.c1'}]}
- Blight MM, LeMetayer M, Delegue MHP, Pickett JA, Marion-Poll F, Wadhams LJ (1997) Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. J Chem Ecol 23:1715–1727
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1105/tpc.007989', 'is_inner': False, 'url': 'https://doi.org/10.1105/tpc.007989'}, {'type': 'PMC', 'value': 'PMC141215', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC141215/'}, {'type': 'PubMed', 'value': '12566586', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12566586/'}]}
- Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494 - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources