Dynamics of range margins for metapopulations under climate change
- PMID: 19324811
- PMCID: PMC2677226
- DOI: 10.1098/rspb.2008.1681
Dynamics of range margins for metapopulations under climate change
Abstract
We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics.
Figures




Similar articles
-
Temperature increase and frost decrease driving upslope elevational range shifts in Alpine grouse and hares.Glob Chang Biol. 2021 Dec;27(24):6602-6614. doi: 10.1111/gcb.15909. Epub 2021 Oct 10. Glob Chang Biol. 2021. PMID: 34582611 Free PMC article.
-
Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps.Glob Chang Biol. 2018 Jul;24(7):3236-3253. doi: 10.1111/gcb.14087. Epub 2018 Mar 13. Glob Chang Biol. 2018. PMID: 29532601
-
Population dynamics can be more important than physiological limits for determining range shifts under climate change.Glob Chang Biol. 2013 Oct;19(10):3224-37. doi: 10.1111/gcb.12289. Glob Chang Biol. 2013. PMID: 23907833
-
Unstable dynamics and population limitation in mountain hares.Biol Rev Camb Philos Soc. 2007 Nov;82(4):527-49. doi: 10.1111/j.1469-185X.2007.00022.x. Biol Rev Camb Philos Soc. 2007. PMID: 17944616 Review.
-
Disequilibrium vegetation dynamics under future climate change.Am J Bot. 2013 Jul;100(7):1266-86. doi: 10.3732/ajb.1200469. Epub 2013 Jun 10. Am J Bot. 2013. PMID: 23757445 Review.
Cited by
-
How does climate change cause extinction?Proc Biol Sci. 2013 Jan 7;280(1750):20121890. doi: 10.1098/rspb.2012.1890. Epub 2012 Oct 17. Proc Biol Sci. 2013. PMID: 23075836 Free PMC article. Review.
-
Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.PeerJ. 2016 Jul 19;4:e2204. doi: 10.7717/peerj.2204. eCollection 2016. PeerJ. 2016. PMID: 27547529 Free PMC article.
-
Interactive range-limit theory (iRLT): An extension for predicting range shifts.J Anim Ecol. 2020 Apr;89(4):940-954. doi: 10.1111/1365-2656.13150. Epub 2019 Dec 30. J Anim Ecol. 2020. PMID: 31758805 Free PMC article. Review.
-
Climate-mediated population dynamics of a migratory songbird differ between the trailing edge and range core.Ecol Monogr. 2023 Feb;93(1):e1559. doi: 10.1002/ecm.1559. Epub 2023 Jan 4. Ecol Monogr. 2023. PMID: 37035418 Free PMC article.
-
Fluctuations in population fecundity drive variation in demographic connectivity and metapopulation dynamics.Proc Biol Sci. 2017 Jan 25;284(1847):20162086. doi: 10.1098/rspb.2016.2086. Proc Biol Sci. 2017. PMID: 28123088 Free PMC article.
References
-
- Akçakaya H.R., Root W.T. Applied Biomathematics; Setauket, NY: 2005. RAMAS GIS: linking landscape data with population viability analysis (v. 5.0)
-
- Akçakaya H.R., Butchart S.H.M., Mace G.M., Stuart S.N., Hilton-Taylor C. Use and misuse of the IUCN red list criteria in projecting climate change impacts on biodiversity. Glob. Chang. Biol. 2006;12:2037–2043. doi:10.1111/j.1365-2486.2006.01253.x - DOI
-
- Araújo M.B., Luoto M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 2007;16:743–753. doi:10.1111/j.1466-8238.2007.00359.x - DOI
-
- Brook B.W., Sodhi N.S., Bradshaw C.J.A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008;23:453–460. doi:10.1016/j.tree.2008.03.011 - DOI - PubMed
-
- Carroll C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: marten and lynx in the northern Appalachians. Conserv. Biol. 2007;21:1092–1104. doi:10.1111/j.1523-1739.2007.00719.x - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous