Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase
- PMID: 19324873
- PMCID: PMC2708880
- DOI: 10.1074/jbc.M807846200
Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase
Abstract
hSMUG1 (human single-stranded selective monofunctional uracil-DNA glyscosylase) is one of three glycosylases encoded within a small region of human chromosome 12. Those three glycosylases, UNG (uracil-DNA glycosylase), TDG (thymine-DNA glyscosylase), and hSMUG1, have in common the capacity to remove uracil from DNA. However, these glycosylases also repair other lesions and have distinct substrate preferences, indicating that they have potentially redundant but not overlapping physiological roles. The mechanisms by which these glycosylases locate and selectively remove target lesions are not well understood. In addition to uracil, hSMUG1 has been shown to remove some oxidized pyrimidines, suggesting a role in the repair of DNA oxidation damage. In this paper, we describe experiments in which a series of oligonucleotides containing purine and pyrimidine analogs have been used to probe mechanisms by which hSMUG1 distinguishes potential substrates. Our results indicate that the preference of hSMUG1 for mispaired uracil over uracil paired with adenine is best explained by the reduced stability of a duplex containing a mispair, consistent with previous reports with Escherichia coli mispaired uracil-DNA glycosylase. We have also extended the substrate range of hSMUG1 to include 5-carboxyuracil, the last in the series of damage products from thymine methyl group oxidation. The properties used by hSMUG1 to select damaged pyrimidines include the size and free energy of solvation of the 5-substituent but not electronic inductive properties. The observed distinct mechanisms of base selection demonstrated for members of the uracil glycosylase family help explain how considerable diversity in chemical lesion repair can be achieved.
Figures








Similar articles
-
Substrate recognition by a family of uracil-DNA glycosylases: UNG, MUG, and TDG.Chem Res Toxicol. 2002 Aug;15(8):1001-9. doi: 10.1021/tx020030a. Chem Res Toxicol. 2002. PMID: 12184783
-
Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.Biochemistry. 2003 May 6;42(17):5003-12. doi: 10.1021/bi0273213. Biochemistry. 2003. PMID: 12718543
-
hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup.J Biol Chem. 2002 Oct 18;277(42):39926-36. doi: 10.1074/jbc.M207107200. Epub 2002 Aug 2. J Biol Chem. 2002. PMID: 12161446
-
Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes.Protein Sci. 2014 Dec;23(12):1667-85. doi: 10.1002/pro.2554. Epub 2014 Oct 25. Protein Sci. 2014. PMID: 25252105 Free PMC article. Review.
-
Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition.Mutat Res. 2010 Mar 1;685(1-2):11-20. doi: 10.1016/j.mrfmmm.2009.10.017. Epub 2009 Nov 10. Mutat Res. 2010. PMID: 19909758 Free PMC article. Review.
Cited by
-
Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro.Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75. doi: 10.1016/j.taap.2011.10.018. Epub 2011 Nov 4. Toxicol Appl Pharmacol. 2012. PMID: 22079256 Free PMC article.
-
Comparison of the structural and dynamic effects of 5-methylcytosine and 5-chlorocytosine in a CpG dinucleotide sequence.Biochemistry. 2013 Nov 26;52(47):8590-8. doi: 10.1021/bi400980c. Epub 2013 Nov 11. Biochemistry. 2013. PMID: 24147911 Free PMC article.
-
Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences.Front Immunol. 2020 May 29;11:1084. doi: 10.3389/fimmu.2020.01084. eCollection 2020. Front Immunol. 2020. PMID: 32547565 Free PMC article. Review.
-
Retracted Article: Divergent synthesis of 5-substituted pyrimidine 2'-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases.Chem Sci. 2020 Oct 7;11(43):11818-11826. doi: 10.1039/d0sc04161k. Chem Sci. 2020. Retraction in: Chem Sci. 2021 Feb 25;12(9):3360. doi: 10.1039/d1sc90028e. PMID: 34123208 Free PMC article. Retracted.
-
Excision of uracil from DNA by hSMUG1 includes strand incision and processing.Nucleic Acids Res. 2019 Jan 25;47(2):779-793. doi: 10.1093/nar/gky1184. Nucleic Acids Res. 2019. PMID: 30496516 Free PMC article.
References
-
- Sousa M. M., Krokan H. E., Slupphaug G. ( 2007) Mol. Aspects Med. 28, 276– 306 - PubMed
-
- Slupphaug G., Eftedal I., Kavli B., Bharati S., Helle N. M., Haug T., Levine D. W., Krokan H. E. ( 1995) Biochemistry 34, 128– 138 - PubMed
-
- Neddermann P., Gallinari P., Lettieri T., Schmid D., Truong O., Hsuan J. J., Weibauer K., Jiricny J. ( 1996) J. Biol. Chem. 217, 12767– 12774 - PubMed
-
- Pearl L. H. ( 2000) Mutat. Res. 460, 165– 181 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources