Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;9(6):1096-1107.
doi: 10.3390/ijms9061096. Epub 2008 Jun 27.

Betulinic Acid for cancer treatment and prevention

Affiliations

Betulinic Acid for cancer treatment and prevention

Simone Fulda. Int J Mol Sci. 2008 Jun.

Abstract

Betulinic acid is a natural product with a range of biological effects, for example potent antitumor activity. This anticancer property is linked to its ability to induce apoptotic cell death in cancer cells by triggering the mitochondrial pathway of apoptosis. In contrast to the cytotoxicity of betulinic acid against a variety of cancer types, normal cells and tissue are relatively resistant to betulinic acid, pointing to a therapeutic window. Compounds that exert a direct action on mitochondria present promising experimental cancer therapeutics, since they may trigger cell death under circumstances in which standard chemotherapeutics fail. Thus, mitochondrion-targeted agents such as betulinic acid hold great promise as a novel therapeutic strategy in the treatment of human cancers.

Keywords: AIF, apoptosis inducing factor; Apaf-1, Apoptotic protease activating factor-1; BA, betulinic acid; DIABLO, direct IAP Binding protein with Low PI; HtrA2, high temperature requirement protein A; IAPs, Inhibitor of Apoptosis Proteins; MOMP, mitochondrial outer membrane permeabilization; PARP, Poly (ADP-ribose) Polymerase; ROS, reactive oxygen species; Smac, second mitochondria-derived activator of caspase; TNF, tumor necrosis factor; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; apoptosis; betulinic acid; cancer; mitochondria; zVAD.fmk, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Structure of betulinic acid.
Figure 2.
Figure 2.
Apoptosis pathways. Apoptosis pathways can be initiated at the level of the mitochondria by the release of apoptogenic factors such as cytochrome c, Smac or AIF from the mitochondrial intermembrane space into the cytosol (mitochondrial or intrinsic pathway) [51]. Smac promotes apoptosis by neutralizing “Inhibitor of Apoptosis Proteins” (IAP)-mediated inhibition of caspase-3 and -9 [51]. Alternatively, apoptosis can be triggered by ligation of death receptors (DR) such as CD95 or TRAIL receptors by their cognate ligands, i.e. CD95 ligand or TRAIL (receptor or extrinsic pathway) [52]. Death receptor stimulation in turn leads to receptor trimerization, recruitment of adaptor molecules such as FADD and activation of the initiator caspase-8, which propagates the death signal to effector caspases such as caspase-3 [–54]. The BH3 domain only protein Bid links the receptor to the mitochondrial pathway [15]: Bid is activated by caspase-8-mediated cleavage and translocates to mitochondria to promote cytochrome c release. Apoptosis can be inhibited by at various levels, e.g. by FLIP, Bcl-2 or IAPs [15, 55, 56].

Similar articles

Cited by

References

    1. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003;66:1022–1037. - PubMed
    1. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–348. - PubMed
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. - PubMed
    1. Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene. 2006;25:4812–4830. - PubMed
    1. Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004;24:90–114. - PubMed