Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;47(1):49-56.
doi: 10.1016/j.yjmcc.2009.03.010. Epub 2009 Mar 25.

Changes in oxygen tension affect cardiac mitochondrial respiration rate via changes in the rate of mitochondrial hydrogen peroxide production

Affiliations

Changes in oxygen tension affect cardiac mitochondrial respiration rate via changes in the rate of mitochondrial hydrogen peroxide production

Carla A Di Maria et al. J Mol Cell Cardiol. 2009 Jul.

Abstract

The capacity of mitochondria to respond to changes in oxygen delivery has the potential to affect the ability of the heart to tolerate decreased oxygen delivery. Respiration by mitochondria is typically regarded as independent of oxygen tension (pO(2)) until critically low oxygen concentrations limit the activity of cytochrome oxidase. Paradoxically, there is evidence that cellular and mitochondrial oxygen consumption (respiration) can decline at oxygen tensions well above this critical pO(2). We tested the hypothesis that oxygen sensitive decreases in mitochondrial hydrogen peroxide production can decrease cardiac mitochondrial respiration rate. Consistent with previous work, an acute decline in pO(2) from 146 mm Hg to 10-13 mm Hg in less than 10 min did not affect mitochondrial respiration rate. In contrast, sustained incubation of mitochondria at a pO(2) of 10-13 mm Hg for 30 min caused a 50% decrease in mitochondrial respiration rate. This decrease in mitochondrial respiration rate was mimicked by incubation with the hydrogen peroxide scavenger catalase and the decrease in mitochondrial respiration rate was fully reversible by reintroducing oxygen or by adding hydrogen peroxide. Incubation at low pO(2) was also associated with a decreased rate of mitochondrial reactive oxygen species production. These findings indicate that oxygen-dependent decreases in the rate of mitochondrial hydrogen peroxide production can decrease cardiac mitochondrial respiration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources