Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;85(1):96-106.
doi: 10.1016/j.eplepsyres.2009.02.018. Epub 2009 Mar 28.

The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat

Affiliations

The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat

Charles H Large et al. Epilepsy Res. 2009 Jul.

Abstract

The development of novel anticonvulsant drugs with improved efficacy for the treatment of epilepsy is hindered by a lack of information regarding the quantitative relationship between target mechanism and in vivo efficacy. In the present study we have examined the correlation between the potency of structurally diverse compounds at voltage-gated sodium channels in vitro and their efficacy in a rodent model of acute generalised seizures induced by electroshock. We observed a significant correlation between the estimated affinity (Ki) of the compounds for the inactivated state of human recombinant Na(V)1.2 channels and the unbound brain concentration required for anticonvulsant efficacy. Furthermore, the data suggest that an unbound concentration equivalent to less than 50% of the Ki is sufficient for anticonvulsant effect. We noted that increasing sodium channel blocking potency was associated with increasing brain tissue binding and lipophilicity. These data suggest that there is a balance between sodium channel blocking potency in vitro and good pharmacokinetic characteristics necessary for anticonvulsant efficacy in vivo. Finally, we examined the sodium channel blocking potency of sodium valproate in relation to its anticonvulsant efficacy in vivo. We found that a higher unbound concentration of the drug in the brain was required for anticonvulsant efficacy than would be expected given its sodium channel blocking potency.

PubMed Disclaimer

MeSH terms

LinkOut - more resources