Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov-Dec;102(2-3):499-509.
doi: 10.1007/s11120-009-9417-3.

Energetics and kinetics of photosynthetic water oxidation studied by photothermal beam deflection (PBD) experiments

Affiliations

Energetics and kinetics of photosynthetic water oxidation studied by photothermal beam deflection (PBD) experiments

André Klauss et al. Photosynth Res. 2009 Nov-Dec.

Abstract

Determination of thermodynamic parameters of water oxidation at the photosystem II (PSII) manganese complex is a major challenge. Photothermal beam deflection (PBD) spectroscopy determines enthalpy changes (ΔH) and apparent volume changes which are coupled with electron transfer in the S-state cycle (Krivanek R, Dau H, Haumann M (2008) Biophys J 94: 1890–1903). Recent PBD results on formation of the Q⁻(A)/Y(•+)(Z) radical pair suggest a value of ΔH similar to the free energy change, ΔG, of -540±40 meV previously determined by the analysis of recombination fluorescence, but presently the uncertainty range of ΔH values determined by PBD is still high (±250 meV). In the oxygen-evolving transition, S₃−−>S₀, the enthalpy change may be close to zero. A prominent non-thermal signal is associated with both Q⁻(A)/Y(•+)(Z) formation (<1 μs) and the S₃−−>S₀ transition (~1 ms). The observed (apparent) volume expansion (ΔV of about +40 ų per PSII unit) in the S₃−−>S₀ transition seems to revert, at least partially, the contractions on lower S-transitions and may also comprise contributions from O₂ and proton release. The observed volume changes show that the S₃−−>S₀ transition is accompanied by significant nuclear movements, which likely are of importance with respect to energetics and mechanism of photosynthetic water oxidation. Detailed PBD studies on all S-transitions will contribute to the progress in PSII research by providing insights not accessible by other spectroscopic methods.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Photochem Photobiol Sci. 2003 Jul;2(7):699-721 - PubMed
    1. Biochim Biophys Acta. 2007 Jun;1767(6):565-74 - PubMed
    1. Chem Rev. 2006 Nov;106(11):4455-83 - PubMed
    1. Biochim Biophys Acta. 1972 May 25;267(2):348-62 - PubMed
    1. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15729-35 - PubMed

Publication types

LinkOut - more resources