Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 23;113(16):5418-30.
doi: 10.1021/jp8094566.

Complex phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/4,4'-diaminodiphenyl sulfone blends: generation of new micro- and nanosubstructures

Affiliations

Complex phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/4,4'-diaminodiphenyl sulfone blends: generation of new micro- and nanosubstructures

P Jyotishkumar et al. J Phys Chem B. .

Abstract

The epoxy system containing diglycidyl ether of bisphenol A and 4,4'-diaminodiphenyl sulfone is modified with poly(acrylonitrile-butadiene-styrene) (ABS) to explore the effects of the ABS content on the phase morphology, mechanism of phase separation, and viscoelastic properties. The amount of ABS in the blends was 5, 10, 15, and 20 parts per hundred of epoxy resin (phr). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to investigate the final morphology of ABS-modified epoxy blends. Scanning electron microscopic studies of 15 phr ABS-modified epoxy blends reveal a bicontinuous structure in which both epoxy and ABS are continuous, with substructures of the ABS phase dispersed in the continuous epoxy phase and substructures of the epoxy phase dispersed in the continuous ABS phase. TEM micrographs of 15 phr ABS-modified epoxy blends confirm the results observed by SEM. TEM micrographs reveal the existence of nanosubstructures of ABS in 20 phr ABS-modified epoxy blends. To the best of our knowledge, to date, nanosubstructures have never been reported in any epoxy/thermoplastic blends. The influence of the concentration of the thermoplastic on the generated morphology as analyzed by SEM and TEM was explained in detail. The evolution and mechanism of phase separation was investigated in detail by optical microscopy (OM) and small-angle laser light scattering (SALLS). At concentrations lower than 10 phr the system phase separates through nucleation and growth (NG). However, at higher concentrations, 15 and 20 phr, the blends phase separate through both NG and spinodal decomposition mechanisms. On the basis of OM and SALLS, we conclude that the phenomenon of complex substructure formation in dynamic asymmetric blends is due to the combined effect of hydrodynamics and viscoelasticity. Additionally, dynamic mechanical analysis was carried out to evaluate the viscoelastic behavior of the cross-linked epoxy/ABS blends. Finally, apparent weight fractions of epoxy and ABS components in epoxy- and ABS-rich phases were evaluated from T(g) analysis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources