Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;217(2):328-35.
doi: 10.1016/j.expneurol.2009.03.018. Epub 2009 Mar 28.

Endogenous brain protection by granulocyte-colony stimulating factor after ischemic stroke

Affiliations

Endogenous brain protection by granulocyte-colony stimulating factor after ischemic stroke

Sevgi Sevimli et al. Exp Neurol. 2009 Jun.

Abstract

Several lines of evidence have demonstrated beneficial effects of the hematopoietic factor G-CSF in experimental stroke. A conclusive demonstration of this effect in G-CSF deficient mice is, however, lacking. We therefore investigated the effect of G-CSF deficiency on infarct volumes, functional recovery, mRNA and protein expression of the matrix metalloproteinase 9 (MMP-9) after stroke. Furthermore we tested the efficacy of G-CSF substitution in G-CSF deficient animals to prevent the potential consequences of G-CSF deficiency. In the present study experimental stroke was induced in female non-treated wildtype (wt), G-CSF deficient mice and G-CSF substituted G-CSF deficient mice followed by assessment of infarct volumes, neurological outcome and sensorimotor function. In addition, immunohistochemistry and real-time PCR of the peri-ischemic area were performed. G-CSF deficient mice showed increased infarct volumes, whereas G-CSF substituted mice had a remarkable reduction in lesion size compared to wt mice. These findings are accompanied by an improvement in neurological and sensorimotor function. G-CSF deficiency resulted in an upregulation of MMP-9 in the direct peri-ischemic tissue. Treatment with G-CSF suppressed the upregulation of MMP-9. Taken together, G-CSF deficiency clearly resulted in enlarged infarct volumes, and worsened neurological outcome. G-CSF substitution abolished these negative effects, led to significant reduced lesion volumes, and improved neurological outcome. G-CSF mediated suppression of MMP-9 further demonstrates that endogenous G-CSF plays a significant role in brain protective mechanisms. We have shown for the first time that endogenous G-CSF is required for brain recovery mechanisms after stroke.

PubMed Disclaimer

Publication types

MeSH terms

Substances