Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 28;130(12):124118.
doi: 10.1063/1.3099609.

Coupled cluster and density functional studies on geometries and energies of excited C(2v) states of ozone

Affiliations

Coupled cluster and density functional studies on geometries and energies of excited C(2v) states of ozone

Friedrich Grein. J Chem Phys. .

Abstract

The performance of single-determinant methods for finding geometries and energies of excited states is tested on the ozone molecule. Geometries for low-lying singlet and triplet states of ozone were optimized by CCSD(T) and density functional theory (DFT) (with BPW91 functional) methods. DFT geometries were found to lie close to CCSD(T) values. Most CCSD(T) and DFT geometries and energies are in good agreement with available experimental and recent high-level theoretical values, with deviations lying within 0.02 A, 2 degrees, and 0.3 eV. An exception is the 1 (1)B(2) state, having a larger deviation of bond distance and energy. A multiconfigurational treatment is required for this state. DFT geometry optimizations and calculations of vibrational frequencies were extended to higher states, covering over 30 excited states of ozone, with adiabatic excitation energies up to about 6 eV. Calculated harmonic frequencies showed several states, including 1 (1)B(2), to be saddle points. Multireference configuration interaction (MRCI) bending potentials for first and second singlet and triplet states were used in verifying the CCSD(T) and DFT geometries and for locating additional minima. For first states, DFT bending potentials are compared with MRCI potentials. As a criterion for the quality of single-determinant geometries and energies of excited states, comparison of their vertical excitation energies with MRCI or time-dependent DFT values is recommended.

PubMed Disclaimer

LinkOut - more resources