Morphological transformation and DNA adduct formation by benz[j]aceanthrylene and its metabolites in C3H10T1/2CL8 cells: evidence for both cyclopenta-ring and bay-region metabolic activation pathways
- PMID: 1933875
Morphological transformation and DNA adduct formation by benz[j]aceanthrylene and its metabolites in C3H10T1/2CL8 cells: evidence for both cyclopenta-ring and bay-region metabolic activation pathways
Abstract
Benz[j]aceanthrylene (B[j]A), a cyclopenta-fused polycyclic aromatic hydrocarbon related to 3-methylcholanthrene, has been studied to identify the major routes of metabolic activation in transformable C3H10T1/2CL8 (C3H10T1/2) mouse embryo fibroblasts in culture. Previous studies have reported that the major (55% of total) B[j]A metabolite formed by C3H10T1/2 cells was (+/-)-trans-9,10-dihydro-9,10-dihydroxy-B[j]A (B[j]A-9,10-diol), the dihydrodiol in the bay-region ring, with moderate amounts (14% of total) of (+/-)-trans-1,2-dihydro-1,2-dihydroxy-B[j]A (B[j]A-1,2-diol), the cyclopenta-ring dihydrodiol. The morphological transforming activities of three potential intermediates formed by metabolism of B[j]A by C3H10T1/2 cells, (+/-)-anti-trans-9,10-dihydro-9,10-dihydroxy-B[j]A-7,8-oxide (B[j]A-diol-epoxide), B[j]A-9,10-oxide, and B[j]A-1,2-oxide as well as the two B[j]A-dihydrodiols were examined. B[j]A, B[j]A-diol-epoxide, B[j]A-1,2-oxide, and B[j]A-9,10-diol were found to have moderate to strong activities with B[j]A-diol-epoxide the most active compared to B[j]A, while B[j]A-1,2-diol was inactive. B[j]A-9,10-oxide was found to be a weak transforming agent. At 0.5 microgram/ml, the following percentage of dishes with type II or III foci were observed: B[j]A, 59%; B[j]A-diol-epoxide, 75%; B[j]A-1,2-oxide, 25%; and B[j]A-9,10-diol, 17%. DNA adducts of B[j]A, B[j]A-9,10-diol, B[j]A-diol-epoxide, B[j]A-9,10-oxide, and B[j]A-1,2-oxide in C3H10T1/2 cells were isolated, separated, identified, and quantitated using the 32P-postlabeling method. B[j]A forms two major groups of adducts: one group of adducts is the result of the interaction of B[j]A-1,2-oxide with 2'-deoxyguanosine and 2'-deoxyadenosine; the second group of adducts is a result of the interaction of B[j]A-diol-epoxide with 2'-deoxyguanosine and 2'-deoxyadenosine. Qualitative and quantitative analysis of the postlabeling data suggests that B[j]A is metabolically activated by two distinct routes, the bay-region diol-epoxide route and the cyclopenta-ring oxide route, the former being the most significant.
Similar articles
-
Morphological transforming activity and metabolism of cyclopenta-fused isomers of benz[a]anthracene in mammalian cells.Mutat Res. 1987 Aug;188(4):323-34. doi: 10.1016/0165-1218(87)90009-7. Mutat Res. 1987. PMID: 3614249
-
Morphological transformation and DNA adduct formation by dibenz[a,h]anthracene and its metabolites in C3H10T1/2CL8 cells.Carcinogenesis. 1994 Oct;15(10):2225-31. doi: 10.1093/carcin/15.10.2225. Carcinogenesis. 1994. PMID: 7955058
-
Comparison of the genotoxic activities of the K-region dihydrodiol of benzo[a]pyrene with benzo[a]pyrene in mammalian cells: morphological cell transformation; DNA damage; and stable covalent DNA adducts.Mutat Res. 2002 Nov 26;521(1-2):91-102. doi: 10.1016/s1383-5718(02)00218-8. Mutat Res. 2002. PMID: 12438007
-
Activation and metabolism of benz[j]aceanthrylene-9,10-dihydrodiol, the precursor to bay-region metabolism of the genotoxic cyclopenta-PAH benz[j]aceanthrylene.Mutat Res. 1993 Jun;287(2):181-90. doi: 10.1016/0027-5107(93)90011-4. Mutat Res. 1993. PMID: 7685478
-
Alternative pathways of polycyclic aromatic hydrocarbons activation: the formation of polar DNA adducts.Acta Biochim Pol. 1999;46(2):263-74. Acta Biochim Pol. 1999. PMID: 10547028 Review.