Snapshot peptidomics of the regulated secretory pathway
- PMID: 19339239
- PMCID: PMC2709191
- DOI: 10.1074/mcp.M900044-MCP200
Snapshot peptidomics of the regulated secretory pathway
Abstract
Neurons and endocrine cells have the regulated secretory pathway (RSP) in which precursor proteins undergo proteolytic processing by prohormone convertase (PC) 1/3 or 2 to generate bioactive peptides. Although motifs for PC-mediated processing have been described ((R/K)X(n)(R/K) where n = 0, 2, 4, or 6), actual processing sites cannot be predicted from amino acid sequences alone. We hypothesized that discovery of bioactive peptides would be facilitated by experimentally identifying signal peptide cleavage sites and processing sites. However, in vivo and in vitro peptide degradation, which is widely recognized in peptidomics, often hampers processing site determination. To obtain sequence information about peptides generated in the RSP on a large scale, we applied a brief exocytotic stimulus (2 min) to cultured endocrine cells and analyzed peptides released into supernatant using LC-MSMS. Of note, 387 of the 400 identified peptides arose from 19 precursor proteins known to be processed in the RSP, including nine peptide hormone and neuropeptide precursors, seven granin-like proteins, and three processing enzymes (PC1/3, PC2, and peptidyl-glycine alpha-amidating monooxygenase). In total, 373 peptides were informative enough to predict processing sites in that they have signal sequence cleavage sites, PC consensus sites, or monobasic cleavage sites. Several monobasic cleavage sites identified here were previously proved to be generated by PCs. Thus, our approach helps to predict processing sites of RSP precursor proteins and will expedite the identification of unknown bioactive peptides hidden in precursor sequences.
Figures





Similar articles
-
Role of prohormone convertases in pro-neuropeptide Y processing: coexpression and in vitro kinetic investigations.Biochemistry. 1997 Dec 23;36(51):16309-20. doi: 10.1021/bi9714767. Biochemistry. 1997. PMID: 9405066
-
Capillary electrophoresis electrospray ionization-mass spectrometry for peptidomics-based processing site determination.Biochem Biophys Res Commun. 2020 Dec 17;533(4):872-878. doi: 10.1016/j.bbrc.2020.09.056. Epub 2020 Sep 29. Biochem Biophys Res Commun. 2020. PMID: 33008600
-
Heterologous processing of prosomatostatin in constitutive and regulated secretory pathways. Putative role of the endoproteases furin, PC1, and PC2.J Biol Chem. 1993 Mar 15;268(8):6041-9. J Biol Chem. 1993. PMID: 8095501
-
Consensus sequence for processing of peptide precursors at monobasic sites.FEBS Lett. 1991 Mar 25;280(2):189-94. doi: 10.1016/0014-5793(91)80290-j. FEBS Lett. 1991. PMID: 2013311 Review.
-
Processing and intracellular targeting of prosomatostatin-derived peptides: the role of mammalian endoproteases.Ciba Found Symp. 1995;190:26-40; discussion 40-50. doi: 10.1002/9780470514733.ch3. Ciba Found Symp. 1995. PMID: 7587651 Review.
Cited by
-
Difference gel electrophoresis identifies differentially expressed proteins in endoscopically collected pancreatic fluid.Electrophoresis. 2011 Aug;32(15):1939-51. doi: 10.1002/elps.201100203. Electrophoresis. 2011. PMID: 21792986 Free PMC article.
-
Large-scale identification of endogenous secretory peptides using electron transfer dissociation mass spectrometry.Mol Cell Proteomics. 2013 Mar;12(3):700-9. doi: 10.1074/mcp.M112.017400. Epub 2012 Dec 18. Mol Cell Proteomics. 2013. PMID: 23250050 Free PMC article.
-
Novel neuropeptides as ligands of orphan G protein-coupled receptors.Curr Pharm Des. 2011;17(25):2626-31. doi: 10.2174/138161211797416110. Curr Pharm Des. 2011. PMID: 21728976 Free PMC article. Review.
-
The neuroendocrine protein 7B2 suppresses the aggregation of neurodegenerative disease-related proteins.J Biol Chem. 2013 Jan 11;288(2):1114-24. doi: 10.1074/jbc.M112.417071. Epub 2012 Nov 21. J Biol Chem. 2013. PMID: 23172224 Free PMC article.
-
Strategies for the Identification of Bioactive Neuropeptides in Vertebrates.Front Neurosci. 2019 Sep 18;13:948. doi: 10.3389/fnins.2019.00948. eCollection 2019. Front Neurosci. 2019. PMID: 31619945 Free PMC article. Review.
References
-
- Zhou A., Webb G., Zhu X., Steiner D. F. ( 1999) Proteolytic processing in the secretory pathway. J. Biol. Chem. 274, 20745– 20748 - PubMed
-
- Brakch N., Rholam M., Boussetta H., Cohen P. ( 1993) Role of beta-turn in proteolytic processing of peptide hormone precursors at dibasic sites. Biochemistry 32, 4925– 4930 - PubMed
-
- Clynen E., Baggerman G., Veelaert D., Cerstiaens A., Van der Horst D., Harthoorn L., Derua R., Waelkens E., De Loof A., Schoofs L. ( 2001) Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur. J. Biochem. 268, 1929– 1939 - PubMed
-
- Schrader M., Schulz-Knappe P. ( 2001) Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S 55– 60 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous