Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Apr;119(4):726-36.
doi: 10.1172/JCI37703.

Bipolar disorder: from genes to behavior pathways

Affiliations
Review

Bipolar disorder: from genes to behavior pathways

Keri Martinowich et al. J Clin Invest. 2009 Apr.

Abstract

Bipolar disorder (BPD) is a devastating illness that is characterized by recurrent episodes of mania and depression. In addition to these cyclic episodes, individuals with BPD exhibit changes in psychovegetative function, cognitive performance, and general health and well being. In this article we draw from neuroimaging findings in humans, postmortem data, and human genetic and pharmacological studies as well as data from animal models of behavior to discuss the neurobiology of BPD. We conclude with a synthesis of where the field stands and with suggestions and strategies for future areas of study to further increase our conceptual understanding of this complex illness.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Locations of the monoaminergic nuclei within the brain as well as the projections from these nuclei throughout the brain.
Nuclei as well as their projections are color coded: yellow, cholinergic; green, dopaminergic; blue, noradrenergic; red, serotonergic.
Figure 2
Figure 2. Schematic of neuroanatomical regions implicated in affective processes.
Neuroimaging studies, observations from patients with selective CNS lesions, as well as data from animal behavioral studies have implicated several regions throughout the brain in the control of mood states and emotions. These regions are located throughout the limbic, striatal, and frontal regions. Adapted with permission from Neuropsychopharmacology (24).
Figure 3
Figure 3. Overview of the PI and Wnt/GSK3 signaling pathways in the neuron.
(A) Lithium directly inhibits key enzymes including IPPase and IMPase that regulate inositol-1,4,5-triphosphate (IP3) recycling. IMPase–mediated catalysis represents the final step in the conversion of inositol monophosphate (IMP) to myoinositol. Thus, inhibiting IMPase can reduce myoinositol levels. The inositol depletion hypothesis proposes that IMPase inhibition interferes with PI synthesis. The PI signaling cascade starts with surface receptor activation, shown here as GPCR-mediated activation of PLC. Activated PLC catalyzes the hydrolysis of PI biphosphate (PIP2) to diacylglycerol (DAG) and IP3. DAG activates PKC, which, among many other functions, activates myristoylated, alanine-rich C-kinase substrate (MARCKS). The antimanic drugs lithium and VPA both decrease levels of phosphorylated and total MARCKS. Molecules in red depict enzymes, while molecules in blue depict second messengers. PI signaling modulates other second messenger proteins including the small GTPase, Ras, and phosphatidylinositol-4-phosphate (PIP4). (B) Overview of the Wnt and GSK3 signaling pathways. Both lithium and Wnt signaling can inhibit GSK3. In the Wnt signaling pathway, Wnt glycoproteins interact with the frizzled family of receptors to stimulate the dishevelled-mediated (not shown) inactivation of GSK3. Inhibition of GSK3 prevents β-catenin phosphorylation, which inhibits its degradation and allows it to act as a transcription factor. Wnt proteins have been implicated in the regulation of neuron morphology, neurotransmission, and synaptogenesis. GSK3 is also inhibited by AKT (also known as PKB), which is activated downstream of the tropomyosin receptor B (TrkB), whose ligand is BDNF. In addition to inhibiting β-catenin, GSK3 has numerous other targets including microtubule-associated proteins, tau, GSK, and rev-erb α. Adapted with permission from Neuropsychopharmacology (24).

Similar articles

Cited by

References

    1. Belmaker R.H. Bipolar disorder. N. Engl. J. Med. 2004;351:476–486. doi: 10.1056/NEJMra035354. - DOI - PubMed
    1. Kupfer D.J. The increasing medical burden in bipolar disorder. JAMA. 2005;293:2528–2530. doi: 10.1001/jama.293.20.2528. - DOI - PubMed
    1. Akiskal H.S., et al. Re-evaluating the prevalence of and diagnostic composition within the broad clinical spectrum of bipolar disorders. . J. Affect. Disord. 2000;59(Suppl. 1):S5–S30. - PubMed
    1. Wilkins A.J., Shallice T., McCarthy R. Frontal lesions and sustained attention. Neuropsychologia. 1987;25:359–365. doi: 10.1016/0028-3932(87)90024-8. - DOI - PubMed
    1. Carlson P.J., Singh J.B., Zarate C.A., Drevets W.C., Manji H.K. Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx. 2006;3:22–41. doi: 10.1016/j.nurx.2005.12.009. - DOI - PMC - PubMed